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Abstract. Permutation factorizations and parking functions have some parallel properties. Kim
and Seo exploited these parallel properties to count the number of ordered, minimal factorizations
of permutations of cycle type (n) and (1, n−1). In this paper, we use parking functions, new tree
enumerations and other necessary tools, to extend the techniques of Kim and Seo to the cases
(2, n−2) and (3, n−3).
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1. Introduction

For any partition λ = (λ1, λ2, . . . , λ`) of n, denoted λ ` n, let Cλ be the conjugacy class
in Sn consisting of elements of cycle type λ and let π(λ) be the element (12 · · ·λ1)(λ1 +
1 · · · λ1+λ2) · · · (λ1 + · · ·+λ`−1+1 · · · λ1 + · · ·+λ`) of Cλ. Let Fλ be the set of m-tuples
of transpositions (σ1, σ2, . . . , σm) such that

(1) σ1σ2 · · ·σm = π(λ),
(2) the σi generate Sn,
(3) m = n+`−2; that is, m is minimal subject to (1) and (2) (see [4, Proposition 2.1]).

Elements of Fλ are called minimal transitive factorizations of π(λ), or simply of λ by
symmetry.

In [4], Goulden and Jackson prove

|Fλ| = m!n`−3
`

∏
i=1

λλi
i

(λi −1)!
. (1.1)
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The proof, however, is not combinatorial. There have been several combinatorial proofs
for the case λ = (n) (see [5, 6, 9]). Recently, Kim and Seo [7] gave a combinatorial
proof of the case λ = (n) and (1, n−1) using parking functions. Here, we use parking
functions and develop the necessary enumerative methodology to extend the approach
of Kim and Seo to give combinatorial proofs of (1.1) for λ = (2, n−2) and (3, n−3).
In particular, we make heavy use of labelled tree enumerations that do not seem to have
appeared elsewhere. The question of how far parking functions and other combinatorial
objects can be used to enumerate minimal transitive factorizations naturally arises.

This paper is organized in the following way. The case λ = (2, n−2) is considered
first, with all details provided, in Sections 2 to 5. Then the case (3, n−3) is considered
in Sections 6 to 8. For this latter case, a number of details are omitted where they are
similar to those given in the case (2, n−2).

2. Preliminaries for the Case (2, n−2)

In this paper we use the convention that permutations are multiplied right to left. Let
σ = (i j) be a transposition and α a permutation in Sn. The product σα can take one
of two forms. If i and j are in the same cycle in α (in the disjoint cycle representation
of α) then in σα the elements i and j will be in different cycles. If i and j are in
different cycles in α then in σα the elements i and j will be in the same cycle. In the
former case we call σ a cut of α and in the latter case we call it a join of α. In the
case λ = (2, n−2), we see π(λ) = (12)(34 · · ·n) and if σ = (σ1, σ2, . . . , σm) ∈ Fλ then
m = n, since the factorization σ has precisely (n− 1) joins and a unique cut. Further,
one can see the cut must be of the form (1r) or (2r), for 3 ≤ r ≤ n. Let Gn,k,r be
the subset of F(2,n−2) such that (1r) is the cut and it is in the k-th position; that is, if
(σ1, σ2, . . . , σm) ∈ Gn,k,r then σk = (1r) and σk is the cut. Similarly, let Hn,k,r be the
subset of F(2,n−2) such that if (σ1, σ2, . . . , σm) ∈ Hn,k,r then σk = (2 r) is the cut. The
following is an easy observation.

Proposition 2.1. For all 3 ≤ r ≤ n, |Gn,k,r| = |Hn,k,r|.

Proof. One can verify the function θ : Gn,k,r −→ Hn,k,r defined by

θ(σ1, σ2, . . . , σm) = (σ′
1, σ′

2, . . . , σ′
m),

where σ′
i = (12)σi (12) is a bijection.

We can also say something about the relationships of the cardinality of Gn,k,r for
different r.

Proposition 2.2. |Gn,k,r| = |Gn,k,s| for all 3 ≤ r, s ≤ n.

Proof. Let θ = (34 · · ·n) and define Θs−r : Gn,k,r −→ Gn,k,s as

Θs−r(σ1, σ2, . . . , σm) = (σ′
1, σ′

2, . . . , σ′
m),

where σ′
i = θs−r σi θr−s. One can easily verify that Θs−r is a bijection.
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A similar proof of a similar fact can be found in [7, p. 4].
At this time we note that for λ = (2, n−2) the cardinality in (1.1) becomes

|Fλ| = 4(n−1)(n−2)n−1. (2.1)

Considering the Gn,k,r and Hn,k,r, the parameter r can take any value between 3 and n,
i.e., r can take any one of n−2 values implying there are a total of 2(n−2) sets Gn,k,r
and Hn,k,r. Thus, if we can count Gn,k,r for some fixed r, we can multiply this number
by 2(n−2) to obtain the total number of factorizations in F(2,n−2). Here, we choose to
enumerate Gn,k,3 and we will drop the subscript ‘3’, i.e., we use Gn,k to denote Gn,k,3 in

the rest of the paper. Therefore, setting Gn =
·
∪k Gn,k, where

·
∪ denotes disjoint union,

it follows from Propositions 2.1 and 2.2 that in order to prove (2.1) it suffices to show

|Gn| = 2(n−1)(n−2)n−2. (2.2)

3. Parking Functions

A parking function is a sequence (a1, a2, . . . , an) of positive integers such that there
exists a permutation ω with aω(i) ≤ i. Let Pn be the set of all parking functions of
length n. A parking function (a1, a2, . . . , an) is called prime if it satisfies the stronger
condition that there is a permutation ω that satisfies aω(1) = 1 and aω(i) ≤ i− 1 for all
i ≥ 2. In keeping with the notation in [7], let Q n,k be the set of prime parking functions
of length n where the left-most 1 appears in the k-th position. Further, in this paper we
will need the set Q̂ n,k, the set of prime parking functions in Q n,k of length n where
no 2 appears in the first k positions; that is, no 2 appears to the left of the left-most 1.
Finally, set

Q n =
·⋃

k
Q n,k, Q̂ n =

·⋃
k

Q̂ n,k. (3.1)

Suppose that (σ1, σ2, . . . , σm) ∈ Gn,k. Since 1 and 2 are in the same cycle in
(12)(34 · · ·n), some join, call it τ, will put them in the same cycle. There are two
cases:

Case 1. the join τ occurs after the cut (that is, the join τ is one of σ1, σ2, . . . , σk−1).
We will refer to this subset of Gn,k as G1

n,k.
Case 2. the join τ occurs before the cut (that is, the join τ is one of σk+1, σk+2, . . . , σn).

We will refer to this subset of Gn,k as G2
n,k.

The seemingly reversed choice of words ‘before’ and ‘after’ are to keep consistent
with our convention of multiplying permutations right to left.

These cases are dealt with separately. In the next proposition, we find a useful
relationship between G1

n,k and Q n,k.

Proposition 3.1. The cardinality of the set G 1
n,k is (k−1) · |Q n−1,k−1|.

Proof. In Case 1 above, the join τ that unites 1 and 2 into the same cycle occurs after
the cut. We can say a fair amount about the structure of such permutations using some
simple observations. Notice that after the cut (13) has been applied to σk+1 · · ·σn,
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the element 1 appears in a 1-cycle until it is joined to 2 by the transposition τ. From
this we conclude τ = (12). Also, since 2 only appears in τ after the cut and 2 never
appears before the cut, the only transposition in which 2 appears is τ. Therefore,
if σ1, σ2, . . . , σn ∈ G1

n,k, then the sequence (σ1, σ2, . . . , σn)− τ (that is, the sequence
(σ1, σ2, . . . , σn) with the transposition τ removed) is a factorization of (1)(34 · · ·n) (it
is minimal because there are n− 1 factors and it is clearly transitive). Furthermore,
τ is the only transposition after the cut σk = (13) where the elements 1 and 2 appear
implying τ commutes with every transposition after the cut; that is, τ commutes with
σ1, σ2, . . . , σk−1. Hence, the number of factorizations in G 1

n,k is k−1 times the number
of factorizations (minimal, transitive) of (1)(34 · · ·n) with cut (13) in the (k−1)-th po-
sition. From [7, Theorem 5] the number of such factorizations of (1)(34 · · ·n) is equal
to the number of elements in Q n−1,k−1, completing the proof.

We now deal with Case 2 above; we will find a similar expression for G 2
n,k in terms

of Q̂ n,k. Define An,k to be the factorizations (σ1, σ2, . . . , σn−1) in F(n) such that

• σ1, σ2, . . . , σk−1 does not contain a 2 or a 3, and
• σk, σk+1, . . . , σn−1 does contain a 1.

Define a function φ : G2
n,k −→ An,k by

φ(σ1, σ2, . . . , σn) = (σ′
1, . . . , σ′

k−1, σk+1, . . . , σn), (3.2)

where σ′
i = (13)σi (13)

Lemma 3.2. The function φ defined in (3.2) is a bijection, implying |G 2
n,k| = |An,k|.

Proof. First, we verify that φ is well-defined. Suppose that (σ1, σ2, . . . , σn) ∈ G2
n,k

and (σ′
1, . . . , σ′

k−1, σk+1, . . . , σn) = φ(σ1, σ2, . . . , σn). Then

(12 · · ·n) = (13)(12)(34 · · ·n)

= (13)σ1σ2 · · ·σk−1(13)σk+1 · · ·σn

= σ′
1σ′

2 · · ·σ′
k−1σk+1 · · ·σn.

Hence, the product of (σ′
1, . . . , σ′

k−1, σk+1, . . . , σn) is (12 · · ·n) and contains n− 1
factors, forcing the factorization to be transitive and minimal. Furthermore, since
(σ1, σ2, . . . , σn)∈G2

n,k, 1 must occur in one of σk+1, σk+2, . . . , σn (otherwise σk = (13)
would be a join) and, clearly, 1 nor 2 appears in any of σ1, σ2, . . . , σk−1. Thus, 2 nor 3
appears in σ1, σ2, . . . , σk−1.

Next, define φ̂ : An,k −→ G2
n,k by

φ̂(σ1, σ2, . . . , σn−1) =
(
σ′

1, . . . , σ′
k−1, (13), σk, . . . , σn−1

)
,

where σ′
i = (13)σi (13). First, we note that φ̂ is well defined. Indeed, if

(
σ′

1, . . . , σ′
k−1, (13), σk, . . . , σn−1

)
= φ̂(σ1, σ2, . . . , σn−1),
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then
(13)σ′

1 · · ·σ
′
k−1 (13)σk · · ·σn−1 = σ1σ2 · · ·σn−1 = (12 · · · n)

implying
σ′

1 · · ·σ
′
k−1 (13)σk · · ·σn−1 = (12)(34 · · ·n).

Further, since
(
σ′

1, . . . , σ′
k−1, (13), σk, . . . , σn−1

)
has n factors, one of which is (13),

it must be minimal and transitive. Also, since 2 nor 3 occurs in σ1, σ2, . . . , σk−1,
1 nor 2 occurs in σ′

1, σ′
2, . . . , σ′

k−1, then 1 and 2 are joined in σk, . . . , σn−1 and the
unique cut cannot be in σ′

1, σ′
2, . . . , σ′

k−1. Finally, the fact that (σ1, σ2, . . . , σn−1) ∈ F(n)

leads to the transpositions σk, . . . , σn−1 are not cuts. Thus, (13) must be the cut in(
σ′

1, . . . , σ′
k−1, (13), σk, . . . , σn−1

)
.

An easy computation will verify that φ̂ is the inverse of φ, so φ is a bijection.

In [7, Corollary 4] Kim and Seo prove the map from Φ : F(n) −→ Pn−1 (the set of
parking functions of length n−1) defined by

Φ(σ1, σ2, . . . , σn−1) = (a1, a2, . . . , an−1), (3.3)

where σi = (ai bi) and ai < bi, is a bijection. Define ψ : An,k −→ Q̂ n,k by

ψ(σ1, σ2, . . . , σn−1) = (â1, . . . , âk−1, 1, ak, . . . , an−1), (3.4)

where

(1) σi = (ai bi) and ai < bi,
(2) âi = (13)ai, i.e.,

âi =





1, if ai = 3,

3, if ai = 1,

ai, otherwise.

Proposition 3.3. The function ψ defined in (3.4) is a bijection. Furthermore,
∣∣G2

n,k

∣∣ =
∣∣∣Q̂ n,k

∣∣∣ ,

i.e., the number of elements in G 2
n,k is the same as the number of prime parking functions

of length n where the left most 1 occurs in the k-th position and no 2 appears in the first
k positions.

Proof. Suppose that (σ1, σ2, . . . , σn−1) ∈ An,k and

(â1, . . . , âk−1, 1, ak, . . . , an−1) = ψ(σ1, σ2, . . . , σn−1).

If σi = (ai bi) and âi = (13)ai, by [7, Corollary 4] we have

=⇒ (a1, a2, . . . , an−1) ∈ Pn−1, 2,3 /∈ a1, . . . , ak−1

=⇒ (â1, . . . , âk−1, ak, . . . , an−1) ∈ Pn−1, 1, 2 /∈ â1, . . . , âk−1

=⇒ (â1, . . . , âk−1, 1, ak, . . . , an−1) ∈ Q̂ n,k,
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so ψ is well defined. Now, define ψ̂ : Q̂ n,k −→ An,k to be

ψ̂(a1, . . . , ak−1, 1, ak+1, . . . , an) = Φ−1(â1, . . . , âk−1, ak+1, . . . , an),

where âi = (13)ai and Φ is defined in (3.3). It is clear that ψ̂ is the inverse of ψ, leading
to ψ is bijective.

To prove |G2
n,k| = |Q̂ n,k|, it follows from Lemma 3.2 that the composition ψ◦φ is a

bijection from G2
n,k to Q̂ n,k.

Define
G i

n =
·
∪k G i

n,k, (3.5)

for i = 1, 2. It is clear from the definitions that

Gn = G1
n

·⋃
G2

n . (3.6)

Propositions 3.1 and 3.3 give us alternative combinatorial interpretations for G 1
n,k and

G2
n,k. In Sections 4.1 and 4.2 we will use these alternative interpretations for G 1

n,k and
G2

n,k to determine the quantities |G i
n| for i = 1, 2 and use these values to determine |Gn|.

4. Enumerating the Classes for the Case (2, n−2)

In this section, we enumerate the two sets G 1
n and G2

n . This is done in the following two
subsections.

4.1. The Number of Elements in G 1
n

We begin this section with a lemma that will be useful to enumerate G 1
n,k.

Lemma 4.1. The number of elements in Q n,k is

(n− k)nn−k−1(n−1)k−2.

Proof. First note that any prime parking function with i 1’s is a permutation of a se-
quence of the form

(1, . . . , 1︸ ︷︷ ︸
i

, a),

where a = a1, a2, . . . , an−i has the property that there exists a permutation ω such that
2 ≤ aω( j) ≤ i + j− 1. Using an argument due to Pollack (see [10, Solutions to Exer-
cise 5.49b]. The argument was originally used by Pollack to enumerate the number of
parking functions of length n), one finds the number of sequences a of length n− i is
(i−1)(n−1)n−i−1. If we restrict the i 1’s to be in the positions k, k +1, . . . , n (one of
the 1’s is necessarily in the k-th position, guaranteeing that we have a prime parking
function in Q n,k), then we see that the number of prime parking functions of this type
of length n is (

n− k
i−1

)
(i−1)(n−1)n−i−1. (4.1)

Clearly, the index i can take the values from 2 to n− k +1. Summing (4.1) from i = 2
to n− k +1 gives the desired result.
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From Proposition 3.1 and Lemma 4.1 we see that

∣∣G1
n
∣∣ =

n−1

∑
k=1

∣∣G1
n,k

∣∣ (definition of G1
n )

=
n−1

∑
k=1

(k−1) ·
∣∣Qn−1,k−1

∣∣

=
n−2

∑
k=0

k(n− k−1)(n−1)n−k−2(n−2)k−2. (4.2)

We now obtain a closed form for (4.2).

Proposition 4.2.
∣∣G1

n
∣∣ = 2(n−1)(n−2)n−2− (n−1)n−1 +(n−2)n−1.

Proof. First notice that (n−2) times the right hand side of (4.2) is

∂2

∂x∂y

n−1

∑
k=0

xn−1−kyk

∣∣∣∣∣ x=n−1
y=n−2

. (4.3)

However, the sum in (4.3) is also

[
zn−1] 1

(1− xz)(1− yz)
,

where [zm] f (z) is the coefficient of zm in the Taylor series expansion of f (z) about z = 0.
Thus,

(n−2) ·G1
n =

∂2

∂x∂y

[
zn−1] 1

(1− xz)(1− yz)

∣∣∣∣∣ x=n−1
y=n−2

=
[
zn−1] z2

(1− (n−1)z)2(1− (n−2)z)2

=
[
zn−3]

(
(n−1)2

(1− (n−1)z)2 −
2(n−1)2(n−2)

1− (n−1)z

+
(n−2)2

(1− (n−2)z)2 +
2(n−2)2(n−1)

1− (n−2)z

)

= 2(n−1)(n−2)n−1− (n−2)(n−1)n−1+(n−2)n,

and the result follows.
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4.2. The Number of Elements in G 2
n

In order to enumerate G2
n,k we find a bijection from prime parking functions to certain

types of trees. In particular, prime parking functions are in 1-1 correspondence with
rooted trees

(
say on vertices {1, 2, . . . , n}

)
such that the root vertex is less than all of

its children. We refer to such trees as Tn and the trees in Tn with root k we call Tn,k.
Recall the number of parking functions is (n + 1)n−1. There are many bijections

from parking functions of length n to rooted forests on n vertices, proving this fact
(see [1, 2, 8, 11] for some examples of such bijections). In particular, in [2, Section 3]
Foata and Riordan give a bijection from parking functions to rooted forests mapping
parking functions with j 1’s to rooted forests with j components where the positions
of the 1’s in the parking functions become the roots in the forest (that is, if a parking
function has five 1’s in position 2, 4, 9, 12 and 21, then this parking function is mapped
to a rooted forest with 5 components whose roots are 2, 4, 9, 12 and 21). Suppose that
we are given a prime parking function p in Q n,k, i.e., the left most 1 in p is in the
k-th position. If we remove this 1 from the p, we are left with a parking function, call
it p̂. The remaining parking function can be mapped to a rooted forest (via the map
in [2, Section 3]) with root labels all greater than k (since all the remaining 1’s are to
the right of the k-th position). We may assume the labels on the vertices of the rooted
forest are {1, 2, . . . , n}\{k}. We may now add a vertex labelled k to the rooted forest
and attach this vertex to all the roots of the rooted forest, giving us a rooted tree in
which the root vertex is less than all its children.

It is not hard to see that this mapping is a bijection. In fact, from the above descrip-
tion, one can see that Q n,k is in 1-1 correspondence with Tn,k.

Using the above bijection from prime parking functions to rooted trees with the
root smaller than all its children, one can see the subset Q̂ n of Q n (defined in (3.1))
corresponds to the subset of Tn where the smallest child of the root has no children
smaller than the root (this, in essence, reflects the fact that no 2 appears to the left of
the left most 1). This subset of Tn will be denoted as T̂n. Thus, from (3.1), (3.5) and
Proposition 3.3 we see

∣∣G2
n
∣∣ =

∣∣∣Q̂ n

∣∣∣ =
∣∣∣T̂n

∣∣∣ . (4.4)

Hence, we will now enumerate T̂n.
Let T (x) = exp(R(x)), where R(x) = xexp(R(x)) (i.e., R(x) and T (x) are the expo-

nential generating functions of rooted trees and rooted forests, respectively, with respect
to the number of vertices). Define the exponential generating function

T̂ (x) = ∑
n≥2

∣∣∣T̂n

∣∣∣ xn

n!
.

In the next theorem we use the abbreviations T̂ = T̂ (x), T = T (x) and R = R(x).

Theorem 4.3. The following functional equation holds.

T̂ =
1
2
−

1
T

+
1

2T 2 .
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Proof. Consider the triple (X , V, T ) where X = {x1, x2, . . . , xi+ j+1} is a set of ver-
tices with i ≥ 1 and j ≥ 0 (we assume that x1 is the smallest element of X), V =
{v1, v2, . . . , vi} is a subset of X of size i with x1 /∈ V and T = (T1, T2, . . . , Ti+ j−1) is a
sequence of rooted forests. Let W = {w1, w2, . . . , w j} be the remaining elements of X ,

that is, W is the set of element of X excluding x1 and the set V . Thus, X = {x1}
·
∪V

·
∪W .

From (X , V, T ) we can construct a tree with the desired properties by

(1) making x1 the root of the tree, having the members of V as children (thus forcing
the root to be smaller than all its children),

(2) assuming that v1 is the smallest element of V , let W be the set of children of v1.
Thus, the root is smaller than all the children of its smallest child,

(3) for 1 ≤ ` ≤ i−1 attaching all the roots of T` to w`,

(4) for i ≤ ` ≤ i+ j−1 attaching the roots of T` to v`− j+1.

This constructs a tree as in Figure 1. It is not difficult to see that this process in

...

...

���������

���

	
�

� � ������� ����� �� �

� � �

� � ����

� �

Figure 1: The tree obtained from a set (X , T ).

fact gives a bijection from ordered triples (X , V, T ) with the properties listed above and
rooted trees with the root smaller than all its children and all the children of its smallest
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child. Therefore, we see from the theory of exponential generating functions that

T̂ = ∑
i≥1

∑
j≥0

(
i+ j

i

)
xi+ j+1

(i+ j +1)!
T i+ j−1 (4.5)

=
x
T ∑

i≥1
∑
j≥0

1
i+ j +1

(xT )i

i!
(xT ) j

j!

=
x
T

1
xT

∫ xT

0
exp(y)(exp(y)−1) dy

=
1
2
−

1
T

+
1

2T 2 ,

completing the proof.

Corollary 4.4. For n ≥ 2, we have |G 2
n | = |T̂n| = (n−1)n−1− (n−2)n−1.

Proof. The first equality is in (4.4). For the second equality we again use the notation
T = exp(R) where R = xexp(R) and T̂ = T̂ (x). Applying the Lagrange Inversion For-
mula (see [3, Section 1.2] and [10, Theorem 5.4.2]) to the resulting generating function
in Theorem 4.3 we obtain for n ≥ 2

n! [xn]

(
1
2
−

1
T

+
1

2T 2

)
= −n!

[
xn−1] 1

R
+n!

[
xn−2] 1

2R2

= (n−1)n−1− (n−2)n−1,

giving the desired result.

5. Main Theorem for the (2, n−2) Case

Theorem 5.1. [Main Theorem for the (2, n−2) case] The equality in (2.1) holds; that
is, ∣∣F(2,n−2)

∣∣ = 4(n−1)(n−2)n−1.

Proof. As discussed at the end of Section 2, to prove (2.1) it suffices to show (2.2), that
is, it suffices to show |Gn| = 2(n−1)(n−2)n−2. However, from (3.6) we see that

|Gn| =
∣∣G1

n
∣∣+

∣∣G2
n
∣∣ .

The cardinalities G1
n and G2

n are evaluated in Proposition 4.2 and Corollary 4.4 and their
sum gives the desired value of |Gn|.

6. Preliminaries for the Case (3, n−3)

We use the solution for the case (2, n−2) as a guide for solving the (3, n−3) case; in
fact, many of the proofs are similar to the case (2, n− 2), and in those cases we omit
the proof and simply refer to the previous given proof.
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Here, we are finding all transitive minimal factorizations of (123)(45 · · ·n). Note,
in this case (1.1) becomes

F(3,n−3) =
27
2

(n−1)(n−2)(n−3)n−2. (6.1)

Note also that in a minimal transitive factorization of (123)(45 · · ·n) there is exactly
one cut. Further, we may once again take advantage of symmetry; it is clear that the
cut can be of the form (r s), where r = 1, 2 or 3 and s = 4, 5, . . . , n and, therefore, it
suffices to enumerate all the minimal, transitive factorizations where (14) is the cut
and multiply the result by 3(n− 3). Namely, it suffices to show that the number of
factorizations of (123)(45 · · ·n) with (14) as the cut is

9
2
(n−1)(n−2)(n−3)n−3. (6.2)

We use the symbol Dn,k to denote the set of minimal, transitive factorizations (σ1,
σ2, . . . ,σn) of (123)(45 · · ·n) with σk = (14) as the cut.

The factorizations (σ1, σ2, . . . , σn) in Dn,k fall into three cases:

Case 1. 1, 2 and 3 are all fixed points after that cut, that is, in the product σk · · ·σn the
elements 1, 2 and 3 are all fixed.

Case 2. Exactly one of 1, 2 or 3 is a fixed point after the cut, that is, in the product
σk · · ·σn exactly one of 1, 2 or 3 is a fixed point.

Case 3. 1, 2 and 3 are in one cycle after the cut, i.e., in the product σk · · ·σn, none of
1, 2 or 3 is a fixed point.

Case 1. In this case we can conclude that the transpositions containing 2 or 3 occur after
the cut, i.e., the only transpositions that contain 2 or 3 are amongst σ1, σ2, . . . , σk−1.
Further, there are exactly two transpositions that contain 2 and 3 in σ1, σ2, . . . , σk−1
and these two transpositions join 1, 2 and 3 into a three cycle. Suppose that these
two transpositions are σi and σ j. Clearly, the product of σ1, σ2, . . . , σn with σi and
σ j removed is (1)(4 . . .n) and it is a factorization of (1)(4 · · ·n) with (14) as the cut
in the (k− 2)-th position (as both σi and σ j occur after the cut), which is enumerated
in [7, Theorem 5] as |Q n−2,k−2|. The two transpositions σi and σ j can be placed after
the cut in

(k−1
2

)
ways and there are three choices for σi and σ j

(
i.e., the number of

factorizations of (123)
)
. Thus, the total number of factorizations in this case is

3
(

k−1
2

)∣∣Q n−2,k−2
∣∣ . (6.3)

Note that k may take the values from 3 to n−1.

Case 2. Exactly, one of 1, 2 or 3 is a fixed point. There are two subcases here.

Case 2a. If the fixed point is 1 then one of σk+1, . . . , σn, say σ j, is the join (23) (since
2 and 3 are not fixed points after the cut). Further, one of σ1, . . . , σk−1, say σi is the
join (12) (to join 1 to 2 and 3 after the cut). Removing σi and σ j from the factorization
gives us a factorization of (1)(4 · · ·n), with (14) as the cut in the (k− 1)-th position
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(since σi is after the cut and σ j is before the cut). Hence, from [7, Theorem 5] the total
number of these factorizations is |Q n−2,k−1|. There are k− 1 choices for the place of
σi (it can occur anywhere after the cut) and n−k choices for σ j (it can occur anywhere
before the cut). Thus, the total number of factorizations of this kind is

(k−1)(n− k)|Q n−2,k−1|. (6.4)

Note that k can assume the values from 2 to n−2.

Case 2b. The other case is when 2 or 3 is the fixed point after the cut. Since there is
symmetry between these two, we may assume that 3 is the fixed point after the cut.

The join (13) is the join in σ1, . . . , σk−1 that joins 3 to 1 and 2, and this is the only
transposition in which 3 appears. Removing this transposition from the factorization
we have a minimal, transitive factorization of (12)(4 · · ·n), i.e., a factorization of type
G2

n,k, which by Proposition 3.3 is Q̂ n−1,k−1. Since there are k− 1 places for the join
(13) after the cut, we see that there are

(k−1)
∣∣∣Q̂ n−1,k−1

∣∣∣

factorizations of this type and accounting for the symmetry between 2 and 3, then there
are

2(k−1)
∣∣∣Q̂ n−1,k−1

∣∣∣ (6.5)

total number of factorizations in the case. Note that k may take any value from 2 to
n−2.

Case 3. The final case is when 1, 2 and 3 are in the same cycle after the cut. If Bn,k is
defined to be the set of minimal factorizations of (12 · · · n) such that

(1) σ1, σ2, . . . , σk−1 does not contain a 2, 3 or 4;
(2) σk, σk+1, . . . , σn−1 does contain a 1.

Then using a proof similar to the proof of Lemma 3.2, we can show that there is a
bijection from factorizations of the type in Case 3 and Bn,k. Further, with a result
similar to Proposition 3.3, we can show that Bn,k is in bijection with prime parking
functions of length n, where the first 1 appears in the k-th position and no 2 or 3 appears

to the left of the left-most 1. We call these prime parking functions ̂̂Q n,k.
We have grouped the factorizations above in an intuitive way; the grouping is based

on which of 1, 2 and 3 are fixed points after the cut. However, from above, we see that
the number of factorizations in Cases 1 and 2a (given in (6.3) and (6.4)) have similar
expressions. We will, therefore, call this set of factorizations D1

n,k, that is, the set of
factorizations in Cases 1 and 2a above will be denoted by D1

n,k. Similarly, we call the
set of factorizations in Case 2b D2

n,k and the set of factorizations in Case 3 D3
n,k. We

enumerate these sets in the next section.

7. Enumerating the Classes for the Case (3, n−3)

We now enumerate all the cases given in the last section.
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7.1. The Number of Elements in D1
n,k (Case 1 and Case 2a)

In Case 1 and Case 2a, we have similar expressions given in (6.3) and (6.4). Com-
bining and summing over the appropriate k we get

n−1

∑
k=2

(
3
(

k−1
2

)
+(k−2)(n− k +1)

)∣∣Q n−2,k−2
∣∣

=
n−1

∑
k=2

(
3
(

k−1
2

)
+(k−2)(n− k +1)

)
(n− k)(n−2)n−k−1(n−3)k−4, (7.1)

the equality follows from Lemma 4.1.

Proposition 7.1. The following is a closed form for (7.1); that is, the number of ele-
ments in D1

n,k is

2(n−2)n−2(n−3)−5(n−2)n−1+
1
2
(n−3)n−3(17n2−63n+54).

Proof. We use a proof similar to that in Proposition 4.2 by noting that (7.1) is equal to

1
n−3

(
3
2

∂3

∂y2∂x
+

∂3

∂x2∂y

) [
zn−1] 1

(1− xz)(1− yz)

∣∣∣∣ x=n−2
y=n−3

.

Simplifying the last expression gives the desired result.

7.2. The Number of Elements in D2
n,k (Case 2b)

In (6.5), the number of factorizations in the Case 2b is given in terms of the prime
parking functions Q̂ n,k. From the discussion immediately preceding (4.4), we see that
these prime parking functions correspond to the subset of the trees T̂n where the root
has the label k. Call these trees T̂n,k. The following lemma finds a closed form for the
number of trees in T̂n,k.

Proposition 7.2. For n = k = 1 we have
∣∣∣T̂n,k

∣∣∣ = 1 and for n > k ≥ 1 we have

∣∣∣T̂n,k

∣∣∣ = (n−2)k−2nn−k−1(n−2k)+(n−2)k−2(n−1)n−k−1(k−1).

Proof. The first claim is clear. For a fixed 1 ≤ k ≤ n−1, let T̂ (x, y) be the multivariate
generating series defined by

T̂ (x, y) = ∑
n≥1

∣∣∣T̂n,k

∣∣∣ xn−k

(n− k)!
yk−1

(k−1)!
,

i.e., for a fixed k, T̂ (x, y) is the generating series for T̂n,k. In T̂ (x, y) the root of a tree
has no marker, x marks vertices larger than the root and y marks vertices smaller than
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the root. Recall that T (t) is the generating function for rooted forests. Using Figure 1
and the proof of Theorem 4.3

(
in particular, we use (4.5)

)
we see that

T̂ (x, y) = ∑̀
≥1

i≥0

(
`+ i

`

)
x`+i

(`+ i)!
(exp(T (x+ y)))`+i−1 .

Therefore, we obtain

∣∣∣T̂n,k

∣∣∣ =

[
xn−k

(n− k)!
yk−1

(k−1)!

]
∑̀
≥1

i≥0

(
`+ i
`

)
x`+i

(`+ i)!
(exp(T (x+ y)))`+i−1

=

[
xn−k

(n− k)!
yk−1

(k−1)!

]
exp(−T (x+ y))

(exp(2xexp(T (x+ y)))− exp(xexp(T (x+ y))))

=

[
xn−k

(n− k)!
yk−1

(k−1)!

]
∑
j≥0

x j

j!
exp(( j−1)T (x+ y))(2 j −1)

= (n− k)!(k−1)!
n−k

∑
j=1

2 j −1
j!

[
xn−k− jyk−1

]
exp(( j−1)T (x+ y))

= (n− k)!(k−1)!
n−k

∑
j=1

2 j −1
j!

(
n− j−1

k−1

)[
tn− j−1]exp(( j−1)T (t))

= (n− k)!(k−1)!
n−k

∑
j=1

2 j −1
j!

(
n− j−1

k−1

)
( j−1)

(n−2)n− j−2

(n− j−1)!

=
n−k

∑
j=1

(
n− k

j

)
( j−1)(2 j −1)(n−2)n− j−2.

The second last equality follows from Lagrange’s Implicit Function Theorem. Finally,
using the technique used in Propositions 4.2 and 7.1, the result follows from the last
equation.

Of course, Proposition 7.2 leaves us with the task of having to compute the quantity
in (6.5) summed over k = 2 to n−2, that is, we must compute

n−2

∑
k=2

2(k−1)
∣∣∣Q̂ n−1,k−1

∣∣∣ .

However, in order to obtain a closed form for this quantity using Proposition 7.2, we
can again use the technique of Propositions 4.2 and 7.1 to obtain

n−2

∑
k=2

2(k−1)
∣∣∣Q̂ n−1,k−1

∣∣∣ = −
1
2
(n−3)n−2(13n−27)+4(n−2)n−1−

1
2
(n−1)n−1.
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Therefore, the last quantity is the number of elements in D2
n,k. We write this as a

proposition for later reference.

Proposition 7.3. The number of elements in D2
n,k is

−
1
2
(n−3)n−2(13n−27)+4(n−2)n−1−

1
2
(n−1)n−1.

7.3. The Number of Elements in D3
n,k (Case 3)

At the end of Section 6, we saw that the number of factorizations in D3
n,k is the number

of prime parking functions in ̂̂Q n,k i.e., the number of prime parking functions of length
n with the first 1 in the k-th position and no 2 or 3 occurring to the left of the left-most
1. At this point we can drop the parameter k; that is, we will be interested in prime
parking functions such that no 2 or 3 appears to the left of the left-most 1, where the
left-most 1 can be in any position (we do this because we can enumerate these objects
over all k at once). Using the reasoning immediately preceding (4.4), we see that these
prime parking functions correspond to rooted trees where

(1) the root is smaller than all its children,
(2) the root is smaller than all the children of its smallest child,
(3) the root is smaller than all the children of its smallest child’s smallest child,
(4) if the root’s smallest child has no children, than the root is smaller than the children

of its second smallest child.

Call this set of trees on n vertices ̂̂T n. Note in the above description that there are two
types of trees given; the first are the trees in (3) and the second being the trees in (4).
The first of these types of trees is given in Figure 2 and the second type of trees is given
in Figure 3.

Let ̂̂T (x) be the generating series

̂̂T (x) = ∑
n≥2

∣∣∣̂̂T n

∣∣∣ xn

n!
.

Using the reasoning used in Theorem 4.3, we see that the contribution of the first type

of trees to ̂̂T (x) is

∑
i≥0
j≥1
`≥1

(
i+ j + `

i, j, `

)
xi+ j+`+1

(i+ j + `)!
T iT j−1T `−1,

and the contribution of the second type of trees is

∑
i≥0
j≥2

(
i+ j

i

)
xi+ j+1

(i+ j +1)!
T iT j−2,
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...

...

...

T1

v1

v3

w2 wjw1

Ti

Ti+1 Ti+j

Ti+j+1

v2

uiu1

Ti+j+2 Ti+j+`−2

v`

x1

Figure 2: The first type of tree in Case 3. Note the root x1 satisfies x1 < vm, wm, um for
all appropriate m.

where, as before, T is the generating series for rooted forests. Combining the last two
equations we get

̂̂T (x) =
1

T 3

∫ xT

0
(expy−1)2 expy dy+

1
T 3

∫ xT

0
(expy− y−1)expy dy

=
1
3

+
1

2T
−

x
T

+
1

T 2 −
5

6T 3 . (7.2)

Using this last equation, we can find the number of elements in D3
n,k.

Proposition 7.4. The number of elements in D3
n,k is

∣∣∣̂̂T n

∣∣∣ =
1
2
(n−1)n−1 +n(n−2)n−2−2(n−2)n−1 +

5
2
(n−3)n−1.
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...

...
Ti+j−2

x1

v3v1 v2

T1

w1 w2

T2

wi

vj

Ti

Ti+1

Figure 3: The second type of trees in Case 3.

Proof. From the discussion at the beginning of this subsection,
∣∣∣D3

n,k

∣∣∣ =
∣∣∣̂̂T n,k

∣∣∣. How-
ever, applying Lagrange’s Implicit Function Theorem on (7.2) gives the result.

8. Main Theorem for the (3, n−3) Case

Theorem 8.1. The equality in (6.1) holds; that is,

∣∣F(3,n−3)

∣∣ =
27
2

(n−1)(n−2)(n−3)n−2.

Proof. As discussed at the beginning of Section 6, it suffices to show that the number
of factorizations with (1 4) as the cut is the number given in (6.2); that is, it suffices to
show that the number of such factorizations is

9
2
(n−1)(n−2)(n−3)n−3.

However, all such factorizations are in one of our sets D1
n,k, D2

n,k or D3
n,k. But these

sets are enumerated in Propositions 7.1, 7.3 and 7.4 and summing the quantities given
in those propositions gives the result.

9. Conclusion

After the proof of (1.1) by Goulden and Jackson in [4], combinatorial proofs of (1.1)
have been found for the cases λ = (n), λ = (1, n−1) and now λ = (2, n−2) and λ =
(3, n−3). The combinatorial form of (1.1) suggests that there should be a combinatorial
proof in general. It would be desirable to extend the methods in this paper to general
λ. The next step in extending this method seems clear, namely to extend this method
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to a general λ = (k, n− k) partition. Indeed, there are many similarities between the
proofs of the cases (2, n−2) and (3, n−3) given here suggesting that a generalization
is possible. It was initially regarded by this author that a complete solution for the case
(3, n− 3) was unattainable using parking functions, but this is demonstrably not so.
This gives hope that the solution can be extended to the general case.

Acknowledgment. I would like to thank Ian Goulden for pointing out the paper [7] and his many
helpful suggestions in the writing and research of this paper.
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