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———> What is probabilistic programming and why?

— Software-driven method for specifying probabilistic models and performing inference for these models!i.

—_— Don’t need to manually code a sampler.

— You don’t need a large data to begin model training.
— Implement your domain knowledge & update the model as more evidence is acquired.

— e.g. Predicting disease case count growth rate: Not enough data to train a good DNN model. But with probabilistic programming,
you can implement your prior belief about the case count growth rate (e.g. 20%) into your model, and let the incoming data update it

(say, to 30%). Here, we call the 20% the prior, 30% the posterior.

— You know the uncertainty of your estimates.
— Probabilistic programming can give us prediction uncertainty.

— e.g. Al predicts protein structure (AlphaFold): How certain are we about the predictions?

— Popular software: STAN, BUGS, JAGS

[1] Hakaru — (GitHub page) “What is probabilistic programming” 3



———>  Why STAN?

— Automatically creates Hamiltonian Monte Carlo (HMC) samplers from Bayesian model.
—  Faster than BUGS and JAGS.

— Provided in multiple software language settings.
— STAN (Sampling Through Adaptive Neighbourhoods)[2!:
— R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)
— BUGS (Bayesian inference Using Gibbs Sampling)3!l:
— WinBUGS (stand-alone software), R (R2WinBUGS, BRug)
— JAGS (Just Another Gibbs Sampler)H!:

> JAGS (stand-alone software), R (rjags)

[2] Carpenter et al. (2017) — “Stan: a probabilistic programming language”
[3] Lunn et al. (2000) — “WinBUGS: a Bayesian modelling framework”
[4] Martyn Plummer (2003) — “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling” 4



Intro to Bayesian inference

—— Random variable

— A variable whose values depend on outcomes of a random event®!,

— e.g. Let Y = amount of time (in days) before we observe false positive from a PCR test.
— y € Y is an observation of Y.

— Let & = mean days.

— Goal of statistical inference: obtain an estimate (8) for the true 6.

— A random variable is associated with a function called

P(y)
00 02 04 06 08 10

‘orobability density function (pdf)’

— pdf assigns a probability density € R to each possible observation y € Y.

1 1
> Y ~Exp(0),p(y) =, ¢

[5] Blitzstein and Hwang (2014) — “Introduction to Probability” 5



Intro to Bayesian inference

— Frequentist vs. Bayesian

— Frequentists: 0 is a fixed (constant) value.

———  Goal: Infer how different 8 is from a hypothesized 6, (e.g. Hy: 6 — 6, = 0)
— Bayesian: 6 is a random variable. (i.e. 8 has its own probability dist’n)

— Goal: Make inference about 8 by obtaining p(8|data) using ‘Bayes rule’.

p(datal®)p(9) _  p(data|®)p(6) Posterior = —LKelhoodxPTioT_ )ik olinood x prior

p(data) B fp(dataw)p(g) do Normalizing constant

p(Oldata) =

—— Posterior distribution p(6|data): The distribution of 8 conditioned on the observations.
—  Prior distribution p(8): Our belief about the distribution of 8 before observing the outcomes.
— Likelihood p(data|8): Joint probability of the observed data as a function of 6.

— Normalizing constant p(data): A constant that reduces a function to a probability function.

—  Usually difficult (often impossible) to compute.



Intro to Bayesian inference

— Bayesian inference: difficulties

data|0)p(6 data|0)p(6 Likelihood X Prior
p( 19p®) _ _»l 19)p(©) Posterior = & Likelihood X prior

fldata) = =
p(Oldata) p(data) fp(datal@)p(G) do Normalizing constant

— Bayesian inference about 6 used to be a very difficult process before PP.
— Difficult to derive the exact posterior distribution analytically.

— High computational complexity.

— Computational method: inference by sampling

— Markov Chain Monte Carlo (MCMC)

———  If we can (somehow) acquire enough samples from the posterior distribution, then we can easily obtain .

——  Default algorithm in STAN, BUGS, JAGS, etc.



— Markov chain (a.k.a Markov process)

— A sequence of possible events in which the probability of each event depends only on the state attained

in the previous eventl®l,

——> Monte Carlo method

— A broad class of algorithms that rely on repeated random sampling to obtain numerical results!l.

Approximating the area of circle with r=1

— e.g. Approximating the area of a circle with a radius = 1 unit s
— 1) Randomly draw a coordinate (x,y) where x € [0,1] and y € [0,1] E
— 2) Ifr = m < 1, plot it red. Otherwise, plot it blue. (a.k.a rejection sampling) - ’
— 3) Repeat 1-2 N times. j .
— A=Wx4zn(asN—>00) g- . | |

0.0 02 04 06 08 10

[6] Paul Gagniuc (2017) — “Markov chains: from theory to implementation and experimentation”
[7] Kroese et al. (2014) — “Why the Monte Carlo method is so important today” 8



Markov Chain Monte Garlo (MGMC)

— Markov Chain Monte Carlo (MCMC)

— Sampling algorithm used in probabilistic programming packages (STAN, BUGS, JAGS).

— Constructs a Markov chain 84, 6,, ..., 8y whose stationary distribution is some distribution P(-).

— A distribution P(-) is ‘stationary’ if
O¢r1 < t(0;) where 8 ~ Pand 6;,; ~ P

—  t(+): transition distribution that moves one state to another state.

—  B¢4qis drawn randomly from t(6;) (hence Monte Carlo)

— 6= %Z’i\’zl 0; (With a large N)



—> Metropolis-Hastings algorithml2l

— Let P(-): The distribution of interest we want to sample from, but hard to do so directly. (i.e. posterior)

— Target distribution f(-): a function that P(:) o f () and the value of f(-) can be computed. (i.e. likelihood X prior)

— Proposal distribution g(6'|@): an arbitrary dist’n that we can easily sample from. (e.g. Normal, Uniform, etc)

—> Intuition: Explore O via (educated) random walk provided by g(+), collect 8" € © that gives high f(6")

— 1) Draw a candidate 8’ ~ q(8'|6;) (for example, N(8;,5?2))
— 2) Compute the acceptance probability: A( 6',0) = min{ ACORY q(gf‘g’)' 1} (i.e.A(6',0,) € [0,1])
£60 " q(6'|6) Burn-in period
(discaArded)
_ |8 if A=c~ Unif(0,1) 0 ‘mixed’
3)5et Or4r = {et if A< c~Unif(0,1)
— 4) Repeat 1-3 N times. Use the accepted candidates in later sequences for 6. RO
p(o’ o' 2 Use only these samples
—>  Works because P(:) « f(-), (07) _ I ),
P(8y)  f(By)

— Limitation: can be very slow for multidimensional ©® = (91 ,05 ,...,0y ) because of low A(6',6,)

[8] Wilfred Keith Hastings (1970) — “Monte Carlo sampling methods using Markov chains and their applications” 10



Markov Chain Monte Garlo (MGMC)

— Gibbs samplerl®]

— Default algorithm for BUGS and JAGS. Pec ~ Beta(ay,.,by..)
— Useful in multidimensional cases. Ssen ~ Beta(as,,, ,bs,., )
Sspec ~ Beta(a’Sspec’ stpec)

T
Pick a random starting vector @(® = (91(0), 92(0), 93(0)) 7 ~ Truncated Normal(0, o0; a, b, )

70 ~ Truncated Normal(0, 00; a,,, b, )

Draw 9( ) p(6,4 |9(0) 9(0) X)

p ~ Truncated Normal(0, oo; a,,, b,,)

(
(
(
n ~ Truncated Normal(0, 0o; ay,, by).

—

—

——  praw 6 ~ p(6,16™,0{” x)
T

— Draw Q?El) ~ p(93|91(1), 92(1),X). Now we have @1 = (91(1), 92(1), 93(1))

—

Repeat until we get @)

— Need to derive full conditional distribution of each 6: p(0j| «9_]-,X)
— Often impossible.

— Sometimes fails to mix.

[9] Stuart and Donald Geman (1984) — “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images” 11



Markov Chain Monte Garlo (MGMC)

——> MH & Gibbs sampler: limitation

— Markov chains take small steps.

Sampler may get stuck here.

— Parameter space is under-explored.

f(6)

— More problematic in multi-modal cases.

— The chain can get stuck in one mode instead of

being able to jump across multiple modes.

— Longer run time to mix, Unstable © .

________________________

— Key to successful MCMC

— Good proposal & good prior: there is no general rule.

12



Markov Chain Monte Garlo (MGMC)

— Hamiltonian Monte Carlo (HMC)!'°]

— Default algorithm for STAN.
— Makes better proposals. Known to mix much faster than MH or Gibbs sampler.
—

Intuition from Hamiltonian dynamics in physics.

P(0|data) \Vl/\\/\k/ Energy \\/ \]/

— Hamiltonian H(8,p) = U(0) + K(p)
——— U(0): potential energy, K(p): kinetic energy

— Use an auxiliary momentum variable p to provide ‘kick’.

[10] Duane et al. (1987) — “Hybrid Monte Carlo” 13



Markov Chain Monte Garlo (MGMC)

— Hamiltonian Monte Carlo (HMC)

o HO,p)=U®) + K@) =—Inf(0) +5p"Mp

——  Draw p(® ~ MVN(0, M)
— M~ ‘Inverse mass’. Symmetric and positive definite (Stan: diagonal estimate of the covariance computed during warmup)

—> For(iinl:L):
: i) . 1. d -
——  pW < p-D +-e—In (f(H(l 1)))
> 0D gl 4 ey 1p®

—— p'@O e p® 4 %e%ln (f(B(i)))

—— AW Ht):min{eXp[_H(e(L)'P'(L))] }

exp[-H(8, p®)] ’

0w if A>r ~ Unif(0,1)

> Gyq =
b {et if A<r~Unif(0,1)

14



— Hamiltonian Monte Carlo: example

—  e.g.one-dimensional case: § ~ N(0,1), p ~ N(0,1)11

Distribution for 1 Parameter Model

Joint Probability Density Contours for m and 6

3.04

Density

254
2.04
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1.0

Joint Probability Dansity Contours for m and 6 0.5+ *
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1.5+
-2.0+
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-3.04

[
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[11] Alan Malony — (YouTube video) “Hamiltonian Monte Carlo For Dummies” 15



——> Hamiltonian Monte Carlo: example

— e.g. one-dimensional case: 8 ~ N(0,1), p ~ N(0,1)1

— 1) Set initial value for 6; (e.g. 8;=-1.75)

Joint Probability Density Contours for m and 6

— 2) Set initial value for p; (e.g. p;=1.00) 30f
254
— 3) Travel around the contour using the Hamiltonian equation. 201

—  Hyperparameters: L (humber of steps), € (step size)

—> Here, L =15, =0.3 P 22

1.04

— 4) At the end of the trajectory, compute the acceptance prob. 151
2.04

using 0@, p™) 9, p,, and set B, accordingly. T

— o g Np—— g Y ——r - g < X e
-30 25 20 15 10 -05 0.0 05 1.0 15 20 25 3.0

— 5) Repeat 2-4 until we get desired number of samples. 4 8

[11] Alan Malony — (YouTube video) “Hamiltonian Monte Carlo For Dummies” 16



———> Hamiltonian Monte Carlo: example

L = 15 steps L =10 steps

Joint Probability Density Contours for m and 8 Joint Probability Density Contours for m and 8

30 | 0] |

25 254 ‘
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— How do we select L and £ ?

— STAN uses ‘NUTS’ (No U-Turn Sampler) as a default HMC algorithm which includes L and € optimization.

[11] Alan Malony — (YouTube video) “Hamiltonian Monte Carlo For Dummies” 17



Markov Chain Monte Garlo (MGMC)

—— Hamiltonian Monte Carlo: bimodal case [12]

@)

4@

=)

N
NSl |

7

[12] Alex Rogozhnikov — (GitHub page) “Hamiltonian Monte Carlo explained”
[13] Ben Lambert — (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm” 18



Summary

——  Probabilistic programming

— Method to automate Bayesian inference.

— No need for manually coding a sampler.

— Bayesian inference

__ p(data|6)p(6)
—  p(Bldata) = Gt~ p(data|0)p(6)

—  Metropolis-Hastings & Gibbs sampler

— Under-representation of the posterior = longer run time, unstable estimation.

—— Hamiltonian Monte Carlo

— Default for RStan: creates an HMC sampler from a Bayesian model.

— Gradient-based proposal. Posterior dist’n is better represented, faster convergence.

19
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