
Introduction to probabilistic programming – part 1

Sonny Min

Department of Statistics and Actuarial Science

3 March 2022

Outline

2

Probabilistic programming

Introduction to Bayesian inference

Markov chain Monte Carlo (MCMC) methods

Metropolis-Hastings

Gibbs sampling

Hamiltonian Monte Carlo

Summary

References

Probabilistic programming

3

What is probabilistic programming and why?

Software-driven method for specifying probabilistic models and performing inference for these models[1].

Don’t need to manually code a sampler.

You don’t need a large data to begin model training.

Implement your domain knowledge & update the model as more evidence is acquired.

e.g. Predicting disease case count growth rate: Not enough data to train a good DNN model. But with probabilistic programming,

you can implement your prior belief about the case count growth rate (e.g. 20%) into your model, and let the incoming data update it

(say, to 30%). Here, we call the 20% the prior, 30% the posterior.

You know the uncertainty of your estimates.

Probabilistic programming can give us prediction uncertainty.

e.g. AI predicts protein structure (AlphaFold): How certain are we about the predictions?

Popular software: STAN, BUGS, JAGS

[1] Hakaru – (GitHub page) “What is probabilistic programming”

Probabilistic programming

4

Why STAN?

Automatically creates Hamiltonian Monte Carlo (HMC) samplers from Bayesian model.

Faster than BUGS and JAGS.

Provided in multiple software language settings.

STAN (Sampling Through Adaptive Neighbourhoods)[2]:

R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)

BUGS (Bayesian inference Using Gibbs Sampling)[3]:

WinBUGS (stand-alone software), R (R2WinBUGS, BRug)

JAGS (Just Another Gibbs Sampler)[4]:

JAGS (stand-alone software), R (rjags)

[2] Carpenter et al. (2017) – “Stan: a probabilistic programming language”
[3] Lunn et al. (2000) – “WinBUGS: a Bayesian modelling framework”
[4] Martyn Plummer (2003) – “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling”

Intro to Bayesian inference

5

Random variable

A variable whose values depend on outcomes of a random event[5].

e.g. Let 𝑌 = amount of time (in days) before we observe false positive from a PCR test.

𝑦 ∈ 𝑌 is an observation of 𝑌.

Let 𝜃 = mean days.

Goal of statistical inference: obtain an estimate (𝜃) for the true 𝜃.

A random variable is associated with a function called

‘probability density function (pdf)’

𝑝𝑑𝑓 assigns a probability density ∈ ℝ to each possible observation 𝑦 ∈ 𝑌.

𝑌 ∼ 𝐸𝑥𝑝(𝜃), 𝑝 𝑦 =
1

𝜃
𝑒−

1

𝜃
𝑦

[5] Blitzstein and Hwang (2014) – “Introduction to Probability”

Area under the curve: 𝑝 1 ≤ 𝑌 ≤ 3 =
1

3
𝑝 𝑦 𝑑𝑦

𝑝 𝑦 =
1

𝜃
𝑒
−
1
𝜃
𝑦

Intro to Bayesian inference

6

Frequentist vs. Bayesian

Frequentists: 𝜃 is a fixed (constant) value.

Goal: Infer how different 𝜃 is from a hypothesized 𝜃0 (e.g. 𝐻0: 𝜃 − 𝜃0 = 0)

Bayesian: 𝜃 is a random variable. (i.e. 𝜃 has its own probability dist’n)

Goal: Make inference about 𝜃 by obtaining 𝑝 𝜃 𝑑𝑎𝑡𝑎 using ‘Bayes rule’.

Posterior distribution 𝑝 𝜃|𝑑𝑎𝑡𝑎 : The distribution of 𝜃 conditioned on the observations.

Prior distribution 𝑝 𝜃 : Our belief about the distribution of 𝜃 before observing the outcomes.

Likelihood 𝑝 𝑑𝑎𝑡𝑎|𝜃 : Joint probability of the observed data as a function of 𝜃.

Normalizing constant 𝑝(𝑑𝑎𝑡𝑎): A constant that reduces a function to a probability function.

Usually difficult (often impossible) to compute.

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
=

𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝 𝜃 𝑑𝜃
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

Intro to Bayesian inference

7

Bayesian inference: difficulties

Bayesian inference about 𝜃 used to be a very difficult process before PP.

Difficult to derive the exact posterior distribution analytically.

High computational complexity.

Computational method: inference by sampling

Markov Chain Monte Carlo (MCMC)

If we can (somehow) acquire enough samples from the posterior distribution, then we can easily obtain 𝜃.

Default algorithm in STAN, BUGS, JAGS, etc.

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
=

𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝 𝜃 𝑑𝜃
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

Markov Chain Monte Carlo (MCMC)

8

Markov chain (a.k.a Markov process)

A sequence of possible events in which the probability of each event depends only on the state attained

in the previous event[6].

Monte Carlo method

A broad class of algorithms that rely on repeated random sampling to obtain numerical results[7].

e.g. Approximating the area of a circle with a radius = 1 unit

1) Randomly draw a coordinate (𝑥, 𝑦) where 𝑥 ∈ [0,1] and 𝑦 ∈ [0,1]

2) If 𝑟 = 𝑥2 + 𝑦2 ≤ 1, plot it red. Otherwise, plot it blue. (a.k.a rejection sampling)

3) Repeat 1-2 𝑁 times.

መ𝐴 =
∑(𝑟𝑒𝑑 𝑑𝑜𝑡𝑠)

𝑁
× 4 ≈ 𝜋 (as 𝑁 → ∞)

[6] Paul Gagniuc (2017) – “Markov chains: from theory to implementation and experimentation”
[7] Kroese et al. (2014) – “Why the Monte Carlo method is so important today”

Markov Chain Monte Carlo (MCMC)

9

Markov Chain Monte Carlo (MCMC)

Sampling algorithm used in probabilistic programming packages (STAN, BUGS, JAGS).

Constructs a Markov chain 𝜃1, 𝜃2, … , 𝜃𝑁 whose stationary distribution is some distribution 𝑃(⋅).

A distribution 𝑃(⋅) is ‘stationary’ if

𝜃𝑡+1 ← 𝑡(𝜃𝑡) where 𝜃𝑡 ∼ 𝑃 and 𝜃𝑡+1 ∼ 𝑃

𝑡(⋅): transition distribution that moves one state to another state.

𝜃𝑡+1is drawn randomly from 𝑡(𝜃𝑡) (hence Monte Carlo)

𝜃 =
1

𝑁
∑𝑖=1
𝑁 𝜃𝑖 (With a large 𝑁)

Markov Chain Monte Carlo (MCMC)

10

Metropolis-Hastings algorithm[8]

Let 𝑃(⋅): The distribution of interest we want to sample from, but hard to do so directly. (i.e. posterior)

Target distribution 𝑓(⋅): a function that 𝑃 ⋅ ∝ 𝑓(⋅) and the value of 𝑓(⋅) can be computed. (i.e. likelihood × prior)

Proposal distribution 𝑞(𝜃′|𝜃): an arbitrary dist’n that we can easily sample from. (e.g. Normal, Uniform, etc)

Intuition: Explore 𝚯 via (educated) random walk provided by 𝑞 ⋅ , collect 𝜃′ ∈ Θ that gives high 𝑓 𝜃′

1) Draw a candidate 𝜃′ ∼ 𝑞(𝜃′|𝜃𝑡) (for example, 𝑁(𝜃𝑡 , 𝜎
2))

2) Compute the acceptance probability: 𝐴 𝜃′, 𝜃 = min{
𝑓 𝜃′

𝑓 𝜃𝑡
×

𝑞 𝜃𝑡 𝜃′

𝑞 𝜃′ 𝜃𝑡
, 1} (i.e.𝐴 𝜃′, 𝜃𝑡 ∈ [0,1])

3) Set 𝜃𝑡+1 = ቊ
𝜃′ 𝑖𝑓 𝐴 ≥ 𝑐 ∼ 𝑈𝑛𝑖𝑓 0,1

𝜃𝑡 𝑖𝑓 𝐴 < 𝑐 ~𝑈𝑛𝑖𝑓 0,1

4) Repeat 1-3 N times. Use the accepted candidates in later sequences for መ𝜃.

Works because 𝑃 ⋅ ∝ 𝑓 ⋅ ,
𝑃 𝜃′

𝑃 𝜃𝑡
=

𝑓(𝜃′)

𝑓(𝜃𝑡)
,

Limitation: can be very slow for multidimensional Θ = 𝜃1 , 𝜃2 , … , 𝜃𝑁 because of low 𝐴 𝜃′, 𝜃𝑡

t

𝜃

Burn-in period
(discarded)

Use only these samples

[8] Wilfred Keith Hastings (1970) – “Monte Carlo sampling methods using Markov chains and their applications”

‘mixed’

Markov Chain Monte Carlo (MCMC)

11

Gibbs sampler[9]

Default algorithm for BUGS and JAGS.

Useful in multidimensional cases.

Pick a random starting vector Θ(0) = 𝜃1
0
, 𝜃2

0
, 𝜃3

0
𝑇

Draw 𝜃1
1
∼ 𝑝(𝜃1|𝜃2

0
, 𝜃3

0
, 𝑿)

Draw 𝜃2
1
∼ 𝑝(𝜃2|𝜃1

1
, 𝜃3

0
, 𝑿)

Draw 𝜃3
1
∼ 𝑝(𝜃3|𝜃1

1
, 𝜃2

1
, 𝑿). Now we have Θ(1) = 𝜃1

1
, 𝜃2

1
, 𝜃3

1
𝑇

Repeat until we get Θ(𝑀)

Need to derive full conditional distribution of each 𝜃: p(𝜃𝑗 𝜃−𝑗 , 𝑋

Often impossible.

Sometimes fails to mix.

[9] Stuart and Donald Geman (1984) – “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images”

Markov Chain Monte Carlo (MCMC)

12

MH & Gibbs sampler: limitation

Markov chains take small steps.

Parameter space is under-explored.

More problematic in multi-modal cases.

The chain can get stuck in one mode instead of

being able to jump across multiple modes.

Longer run time to mix, Unstable Θ .

Key to successful MCMC

Good proposal & good prior: there is no general rule.

𝜃

𝑓(𝜃)

Sampler may get stuck here.

Markov Chain Monte Carlo (MCMC)

13

Hamiltonian Monte Carlo (HMC)[10]

Default algorithm for STAN.

Makes better proposals. Known to mix much faster than MH or Gibbs sampler.

Intuition from Hamiltonian dynamics in physics.

Hamiltonian 𝐻 𝜃, 𝑝 = 𝑈 𝜃 + 𝐾(𝑝)

𝑈(𝜃): potential energy, 𝐾(𝑝): kinetic energy

Use an auxiliary momentum variable 𝑝 to provide ‘kick’.

[10] Duane et al. (1987) – “Hybrid Monte Carlo”

𝜃

Energy

𝜃

𝑃 𝜃 𝑑𝑎𝑡𝑎

Markov Chain Monte Carlo (MCMC)

14

Hamiltonian Monte Carlo (HMC)

𝐻 𝜃, 𝑝 = 𝑈 𝜃 + 𝐾 𝑝 = − ln 𝑓 𝜃 +
1

2
𝑝𝑇𝑀−1𝑝

Draw 𝑝(0) ∼ 𝑀𝑉𝑁 0,𝑀

𝑀−1: ‘Inverse mass’. Symmetric and positive definite (Stan: diagonal estimate of the covariance computed during warmup)

For (𝑖 𝑖𝑛 1: 𝐿) :

𝑝 𝑖 ← 𝑝′(𝑖−1) +
1

2
𝜀

𝑑

𝑑𝜃
ln 𝑓 𝜃 𝑖−1

𝜃(𝑖) ← 𝜃(𝑖−1) + 𝜀𝑀−1𝑝 𝑖

𝑝′(𝑖) ← 𝑝 𝑖 +
1

2
𝜀

𝑑

𝑑𝜃
ln 𝑓 𝜃(𝑖)

𝐴 𝜃 𝐿 , 𝜃𝑡 = min
exp −𝐻 𝜃 𝐿 , 𝑝′ 𝐿

exp −𝐻 𝜃𝑡, 𝑝
0 , 1

𝜃𝑡+1 = ൝
𝜃 𝐿 𝑖𝑓 𝐴 ≥ 𝑟 ∼ 𝑈𝑛𝑖𝑓 0,1

𝜃𝑡 𝑖𝑓 𝐴 < 𝑟 ~𝑈𝑛𝑖𝑓 0,1

Markov Chain Monte Carlo (MCMC)

15

Hamiltonian Monte Carlo: example

e.g. one-dimensional case: 𝜃 ∼ 𝑁 0,1 , 𝑝 ∼ 𝑁(0,1)[11]

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

p

𝜃

p

Markov Chain Monte Carlo (MCMC)

16

Hamiltonian Monte Carlo: example

e.g. one-dimensional case: 𝜃 ∼ 𝑁 0,1 , 𝑝 ∼ 𝑁(0,1)[11]

1) Set initial value for 𝜃𝑡 (e.g. 𝜃𝑡=-1.75)

2) Set initial value for 𝑝𝑡 (e.g. 𝑝𝑡=1.00)

3) Travel around the contour using the Hamiltonian equation.

Hyperparameters: 𝐿 (number of steps), 𝜀 (step size)

Here, 𝐿 = 15, 𝜀 = 0.3

4) At the end of the trajectory, compute the acceptance prob.

using 𝜃(𝐿), 𝑝(𝐿), 𝜃𝑡, 𝑝𝑡, and set 𝜃𝑡+1 accordingly.

5) Repeat 2-4 until we get desired number of samples.

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

p

Markov Chain Monte Carlo (MCMC)

17

Hamiltonian Monte Carlo: example

How do we select 𝐿 and 𝜀 ?

STAN uses ‘NUTS’ (No U-Turn Sampler) as a default HMC algorithm which includes 𝐿 and 𝜀 optimization.

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

Markov Chain Monte Carlo (MCMC)

18

Hamiltonian Monte Carlo: bimodal case [12]

[12] Alex Rogozhnikov – (GitHub page) “Hamiltonian Monte Carlo explained”
[13] Ben Lambert – (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm”

Summary

19

Probabilistic programming

Method to automate Bayesian inference.

No need for manually coding a sampler.

Bayesian inference

p 𝜃 𝑑𝑎𝑡𝑎 =
𝑝(𝑑𝑎𝑡𝑎|𝜃)𝑝 𝜃

𝑝(𝑑𝑎𝑡𝑎)
∝ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

Metropolis-Hastings & Gibbs sampler

Under-representation of the posterior → longer run time, unstable estimation.

Hamiltonian Monte Carlo

Default for RStan: creates an HMC sampler from a Bayesian model.

Gradient-based proposal. Posterior dist’n is better represented, faster convergence.

References

20

[1] Hakaru – (GitHub page) “What is probabilistic programming”

[2] Carpenter et al. (2017) – “Stan: a probabilistic programming language”

[3] Lunn et al. (2000) – “WinBUGS: a Bayesian modelling framework”

[4] Martyn Plummer (2003) – “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling”

[5] Blitzstein and Hwang (2014) – “Introduction to Probability”

[6] Paul Gagniuc (2017) – “Markov chains: from theory to implementation and experimentation”

[7] Kroese et al. (2014) – “Why the Monte Carlo method is so important today”

[8] Wilfred Keith Hastings (1970) – “Monte Carlo sampling methods using Markov chains and their applications”

[9] Stuart and Donald Geman (1984) – “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images”

[10] Duane et al. (1987) – “Hybrid Monte Carlo”

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

[12] Alex Rogozhnikov – (GitHub page) “Hamiltonian Monte Carlo explained”

[13] Ben Lambert – (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm”

