
Introduction to probabilistic programming – part 1

Sonny Min

Department of Statistics and Actuarial Science

3 March 2022

Outline

2

Probabilistic programming

Introduction to Bayesian inference

Markov chain Monte Carlo (MCMC) methods

Metropolis-Hastings

Gibbs sampling

Hamiltonian Monte Carlo

Summary

References

Probabilistic programming

3

What is probabilistic programming and why?

Software-driven method for specifying probabilistic models and performing inference for these models[1].

Don’t need to manually code a sampler.

You don’t need a large data to begin model training.

Implement your domain knowledge & update the model as more evidence is acquired.

e.g. Predicting disease case count growth rate: Not enough data to train a good DNN model. But with probabilistic programming,

you can implement your prior belief about the case count growth rate (e.g. 20%) into your model, and let the incoming data update it

(say, to 30%). Here, we call the 20% the prior, 30% the posterior.

You know the uncertainty of your estimates.

Probabilistic programming can give us prediction uncertainty.

e.g. AI predicts protein structure (AlphaFold): How certain are we about the predictions?

Popular software: STAN, BUGS, JAGS

[1] Hakaru – (GitHub page) “What is probabilistic programming”

Probabilistic programming

4

Why STAN?

Automatically creates Hamiltonian Monte Carlo (HMC) samplers from Bayesian model.

Faster than BUGS and JAGS.

Provided in multiple software language settings.

STAN (Sampling Through Adaptive Neighbourhoods)[2]:

R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)

BUGS (Bayesian inference Using Gibbs Sampling)[3]:

WinBUGS (stand-alone software), R (R2WinBUGS, BRug)

JAGS (Just Another Gibbs Sampler)[4]:

JAGS (stand-alone software), R (rjags)

[2] Carpenter et al. (2017) – “Stan: a probabilistic programming language”
[3] Lunn et al. (2000) – “WinBUGS: a Bayesian modelling framework”
[4] Martyn Plummer (2003) – “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling”

Intro to Bayesian inference

5

Random variable

A variable whose values depend on outcomes of a random event[5].

e.g. Let 𝑌 = amount of time (in days) before we observe false positive from a PCR test.

𝑦 ∈ 𝑌 is an observation of 𝑌.

Let 𝜃 = mean days.

Goal of statistical inference: obtain an estimate (෠𝜃) for the true 𝜃.

A random variable is associated with a function called

‘probability density function (pdf)’

𝑝𝑑𝑓 assigns a probability density ∈ ℝ to each possible observation 𝑦 ∈ 𝑌.

𝑌 ∼ 𝐸𝑥𝑝(𝜃), 𝑝 𝑦 =
1

𝜃
𝑒−

1

𝜃
𝑦

[5] Blitzstein and Hwang (2014) – “Introduction to Probability”

Area under the curve: 𝑝 1 ≤ 𝑌 ≤ 3 = ׬
1

3
𝑝 𝑦 𝑑𝑦

𝑝 𝑦 =
1

𝜃
𝑒
−
1
𝜃
𝑦

Intro to Bayesian inference

6

Frequentist vs. Bayesian

Frequentists: 𝜃 is a fixed (constant) value.

Goal: Infer how different ෠𝜃 is from a hypothesized 𝜃0 (e.g. 𝐻0: ෠𝜃 − 𝜃0 = 0)

Bayesian: 𝜃 is a random variable. (i.e. 𝜃 has its own probability dist’n)

Goal: Make inference about 𝜃 by obtaining 𝑝 𝜃 𝑑𝑎𝑡𝑎 using ‘Bayes rule’.

Posterior distribution 𝑝 𝜃|𝑑𝑎𝑡𝑎 : The distribution of 𝜃 conditioned on the observations.

Prior distribution 𝑝 𝜃 : Our belief about the distribution of 𝜃 before observing the outcomes.

Likelihood 𝑝 𝑑𝑎𝑡𝑎|𝜃 : Joint probability of the observed data as a function of 𝜃.

Normalizing constant 𝑝(𝑑𝑎𝑡𝑎): A constant that reduces a function to a probability function.

Usually difficult (often impossible) to compute.

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
=

𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

׬ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝 𝜃 𝑑𝜃
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

Intro to Bayesian inference

7

Bayesian inference: difficulties

Bayesian inference about 𝜃 used to be a very difficult process before PP.

Difficult to derive the exact posterior distribution analytically.

High computational complexity.

Computational method: inference by sampling

Markov Chain Monte Carlo (MCMC)

If we can (somehow) acquire enough samples from the posterior distribution, then we can easily obtain ෠𝜃.

Default algorithm in STAN, BUGS, JAGS, etc.

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
=

𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

׬ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝 𝜃 𝑑𝜃
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

Markov Chain Monte Carlo (MCMC)

8

Markov chain (a.k.a Markov process)

A sequence of possible events in which the probability of each event depends only on the state attained

in the previous event[6].

Monte Carlo method

A broad class of algorithms that rely on repeated random sampling to obtain numerical results[7].

e.g. Approximating the area of a circle with a radius = 1 unit

1) Randomly draw a coordinate (𝑥, 𝑦) where 𝑥 ∈ [0,1] and 𝑦 ∈ [0,1]

2) If 𝑟 = 𝑥2 + 𝑦2 ≤ 1, plot it red. Otherwise, plot it blue. (a.k.a rejection sampling)

3) Repeat 1-2 𝑁 times.

መ𝐴 =
∑(𝑟𝑒𝑑 𝑑𝑜𝑡𝑠)

𝑁
× 4 ≈ 𝜋 (as 𝑁 → ∞)

[6] Paul Gagniuc (2017) – “Markov chains: from theory to implementation and experimentation”
[7] Kroese et al. (2014) – “Why the Monte Carlo method is so important today”

Markov Chain Monte Carlo (MCMC)

9

Markov Chain Monte Carlo (MCMC)

Sampling algorithm used in probabilistic programming packages (STAN, BUGS, JAGS).

Constructs a Markov chain 𝜃1, 𝜃2, … , 𝜃𝑁 whose stationary distribution is some distribution 𝑃(⋅).

A distribution 𝑃(⋅) is ‘stationary’ if

𝜃𝑡+1 ← 𝑡(𝜃𝑡) where 𝜃𝑡 ∼ 𝑃 and 𝜃𝑡+1 ∼ 𝑃

𝑡(⋅): transition distribution that moves one state to another state.

𝜃𝑡+1is drawn randomly from 𝑡(𝜃𝑡) (hence Monte Carlo)

෠𝜃 =
1

𝑁
∑𝑖=1
𝑁 𝜃𝑖 (With a large 𝑁)

Markov Chain Monte Carlo (MCMC)

10

Metropolis-Hastings algorithm[8]

Let 𝑃(⋅): The distribution of interest we want to sample from, but hard to do so directly. (i.e. posterior)

Target distribution 𝑓(⋅): a function that 𝑃 ⋅ ∝ 𝑓(⋅) and the value of 𝑓(⋅) can be computed. (i.e. likelihood × prior)

Proposal distribution 𝑞(𝜃′|𝜃): an arbitrary dist’n that we can easily sample from. (e.g. Normal, Uniform, etc)

Intuition: Explore 𝚯 via (educated) random walk provided by 𝑞 ⋅ , collect 𝜃′ ∈ Θ that gives high 𝑓 𝜃′

1) Draw a candidate 𝜃′ ∼ 𝑞(𝜃′|𝜃𝑡) (for example, 𝑁(𝜃𝑡 , 𝜎
2))

2) Compute the acceptance probability: 𝐴 𝜃′, 𝜃 = min{
𝑓 𝜃′

𝑓 𝜃𝑡
×

𝑞 𝜃𝑡 𝜃′

𝑞 𝜃′ 𝜃𝑡
, 1} (i.e.𝐴 𝜃′, 𝜃𝑡 ∈ [0,1])

3) Set 𝜃𝑡+1 = ቊ
𝜃′ 𝑖𝑓 𝐴 ≥ 𝑐 ∼ 𝑈𝑛𝑖𝑓 0,1

𝜃𝑡 𝑖𝑓 𝐴 < 𝑐 ~𝑈𝑛𝑖𝑓 0,1

4) Repeat 1-3 N times. Use the accepted candidates in later sequences for መ𝜃.

Works because 𝑃 ⋅ ∝ 𝑓 ⋅ ,
𝑃 𝜃′

𝑃 𝜃𝑡
=

𝑓(𝜃′)

𝑓(𝜃𝑡)
,

Limitation: can be very slow for multidimensional Θ = 𝜃1 , 𝜃2 , … , 𝜃𝑁 because of low 𝐴 𝜃′, 𝜃𝑡

t

𝜃

Burn-in period
(discarded)

Use only these samples

[8] Wilfred Keith Hastings (1970) – “Monte Carlo sampling methods using Markov chains and their applications”

‘mixed’

Markov Chain Monte Carlo (MCMC)

11

Gibbs sampler[9]

Default algorithm for BUGS and JAGS.

Useful in multidimensional cases.

Pick a random starting vector Θ(0) = 𝜃1
0
, 𝜃2

0
, 𝜃3

0
𝑇

Draw 𝜃1
1
∼ 𝑝(𝜃1|𝜃2

0
, 𝜃3

0
, 𝑿)

Draw 𝜃2
1
∼ 𝑝(𝜃2|𝜃1

1
, 𝜃3

0
, 𝑿)

Draw 𝜃3
1
∼ 𝑝(𝜃3|𝜃1

1
, 𝜃2

1
, 𝑿). Now we have Θ(1) = 𝜃1

1
, 𝜃2

1
, 𝜃3

1
𝑇

Repeat until we get Θ(𝑀)

Need to derive full conditional distribution of each 𝜃: p(𝜃𝑗 𝜃−𝑗 , 𝑋

Often impossible.

Sometimes fails to mix.

[9] Stuart and Donald Geman (1984) – “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images”

Markov Chain Monte Carlo (MCMC)

12

MH & Gibbs sampler: limitation

Markov chains take small steps.

Parameter space is under-explored.

More problematic in multi-modal cases.

The chain can get stuck in one mode instead of

being able to jump across multiple modes.

Longer run time to mix, Unstable ෡Θ .

Key to successful MCMC

Good proposal & good prior: there is no general rule.

𝜃

𝑓(𝜃)

Sampler may get stuck here.

Markov Chain Monte Carlo (MCMC)

13

Hamiltonian Monte Carlo (HMC)[10]

Default algorithm for STAN.

Makes better proposals. Known to mix much faster than MH or Gibbs sampler.

Intuition from Hamiltonian dynamics in physics.

Hamiltonian 𝐻 𝜃, 𝑝 = 𝑈 𝜃 + 𝐾(𝑝)

𝑈(𝜃): potential energy, 𝐾(𝑝): kinetic energy

Use an auxiliary momentum variable 𝑝 to provide ‘kick’.

[10] Duane et al. (1987) – “Hybrid Monte Carlo”

𝜃

Energy

𝜃

𝑃 𝜃 𝑑𝑎𝑡𝑎

Markov Chain Monte Carlo (MCMC)

14

Hamiltonian Monte Carlo (HMC)

𝐻 𝜃, 𝑝 = 𝑈 𝜃 + 𝐾 𝑝 = − ln 𝑓 𝜃 +
1

2
𝑝𝑇𝑀−1𝑝

Draw 𝑝(0) ∼ 𝑀𝑉𝑁 0,𝑀

𝑀−1: ‘Inverse mass’. Symmetric and positive definite (Stan: diagonal estimate of the covariance computed during warmup)

For (𝑖 𝑖𝑛 1: 𝐿) :

𝑝 𝑖 ← 𝑝′(𝑖−1) +
1

2
𝜀

𝑑

𝑑𝜃
ln 𝑓 𝜃 𝑖−1

𝜃(𝑖) ← 𝜃(𝑖−1) + 𝜀𝑀−1𝑝 𝑖

𝑝′(𝑖) ← 𝑝 𝑖 +
1

2
𝜀

𝑑

𝑑𝜃
ln 𝑓 𝜃(𝑖)

𝐴 𝜃 𝐿 , 𝜃𝑡 = min
exp −𝐻 𝜃 𝐿 , 𝑝′ 𝐿

exp −𝐻 𝜃𝑡, 𝑝
0 , 1

𝜃𝑡+1 = ൝
𝜃 𝐿 𝑖𝑓 𝐴 ≥ 𝑟 ∼ 𝑈𝑛𝑖𝑓 0,1

𝜃𝑡 𝑖𝑓 𝐴 < 𝑟 ~𝑈𝑛𝑖𝑓 0,1

Markov Chain Monte Carlo (MCMC)

15

Hamiltonian Monte Carlo: example

e.g. one-dimensional case: 𝜃 ∼ 𝑁 0,1 , 𝑝 ∼ 𝑁(0,1)[11]

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

p

𝜃

p

Markov Chain Monte Carlo (MCMC)

16

Hamiltonian Monte Carlo: example

e.g. one-dimensional case: 𝜃 ∼ 𝑁 0,1 , 𝑝 ∼ 𝑁(0,1)[11]

1) Set initial value for 𝜃𝑡 (e.g. 𝜃𝑡=-1.75)

2) Set initial value for 𝑝𝑡 (e.g. 𝑝𝑡=1.00)

3) Travel around the contour using the Hamiltonian equation.

Hyperparameters: 𝐿 (number of steps), 𝜀 (step size)

Here, 𝐿 = 15, 𝜀 = 0.3

4) At the end of the trajectory, compute the acceptance prob.

using 𝜃(𝐿), 𝑝(𝐿), 𝜃𝑡, 𝑝𝑡, and set 𝜃𝑡+1 accordingly.

5) Repeat 2-4 until we get desired number of samples.

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

p

Markov Chain Monte Carlo (MCMC)

17

Hamiltonian Monte Carlo: example

How do we select 𝐿 and 𝜀 ?

STAN uses ‘NUTS’ (No U-Turn Sampler) as a default HMC algorithm which includes 𝐿 and 𝜀 optimization.

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

Markov Chain Monte Carlo (MCMC)

18

Hamiltonian Monte Carlo: bimodal case [12]

[12] Alex Rogozhnikov – (GitHub page) “Hamiltonian Monte Carlo explained”
[13] Ben Lambert – (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm”

Summary

19

Probabilistic programming

Method to automate Bayesian inference.

No need for manually coding a sampler.

Bayesian inference

p 𝜃 𝑑𝑎𝑡𝑎 =
𝑝(𝑑𝑎𝑡𝑎|𝜃)𝑝 𝜃

𝑝(𝑑𝑎𝑡𝑎)
∝ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

Metropolis-Hastings & Gibbs sampler

Under-representation of the posterior → longer run time, unstable estimation.

Hamiltonian Monte Carlo

Default for RStan: creates an HMC sampler from a Bayesian model.

Gradient-based proposal. Posterior dist’n is better represented, faster convergence.

References

20

[1] Hakaru – (GitHub page) “What is probabilistic programming”

[2] Carpenter et al. (2017) – “Stan: a probabilistic programming language”

[3] Lunn et al. (2000) – “WinBUGS: a Bayesian modelling framework”

[4] Martyn Plummer (2003) – “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling”

[5] Blitzstein and Hwang (2014) – “Introduction to Probability”

[6] Paul Gagniuc (2017) – “Markov chains: from theory to implementation and experimentation”

[7] Kroese et al. (2014) – “Why the Monte Carlo method is so important today”

[8] Wilfred Keith Hastings (1970) – “Monte Carlo sampling methods using Markov chains and their applications”

[9] Stuart and Donald Geman (1984) – “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images”

[10] Duane et al. (1987) – “Hybrid Monte Carlo”

[11] Alan Malony – (YouTube video) “Hamiltonian Monte Carlo For Dummies”

[12] Alex Rogozhnikov – (GitHub page) “Hamiltonian Monte Carlo explained”

[13] Ben Lambert – (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm”

