Introduction to probabilistic programming – part 1

Sonny Min

Department of Statistics and Actuarial Science

3 March 2022

Outline

- Probabilistic programming
- ightarrow Introduction to Bayesian inference
 - Markov chain Monte Carlo (MCMC) methods
 - → Metropolis-Hastings
- -----> Gibbs sampling

 \rightarrow

 \rightarrow

- Hamiltonian Monte Carlo
 - Summary

ightarrow References

What is probabilistic programming and why?

- \rightarrow Software-driven method for specifying probabilistic models and performing inference for these models^[1].
 - \rightarrow Don't need to manually code a sampler.
- You don't need a large data to begin model training.
 - Implement your domain knowledge & update the model as more evidence is acquired.
 - e.g. Predicting disease case count growth rate: Not enough data to train a good DNN model. But with probabilistic programming,
 you can implement your prior belief about the case count growth rate (e.g. 20%) into your model, and let the incoming data update it
 (say, to 30%). Here, we call the 20% the *prior*, 30% the *posterior*.
 - ightarrow You know the uncertainty of your estimates.
 - ightarrow Probabilistic programming can give us prediction uncertainty.
 - e.g. AI predicts protein structure (AlphaFold): How certain are we about the predictions?
 - \rightarrow Popular software: STAN, BUGS, JAGS

Probabilistic programming

Why STAN?

- \rightarrow Automatically creates Hamiltonian Monte Carlo (HMC) samplers from Bayesian model.
 - ightarrow Faster than BUGS and JAGS.
- ightarrow Provided in multiple software language settings.
 - \longrightarrow STAN (**S**ampling **T**hrough **A**daptive **N**eighbourhoods)^[2]:
 - R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)
 - \rightarrow BUGS (**B**ayesian inference **U**sing **G**ibbs **S**ampling)^[3]:
 - → WinBUGS (stand-alone software), R (R2WinBUGS, BRug)
 - \rightarrow JAGS (Just Another Gibbs Sampler)^[4]:
 - → JAGS (stand-alone software), R (rjags)

[2] Carpenter et al. (2017) – "Stan: a probabilistic programming language"

[3] Lunn et al. (2000) – "WinBUGS: a Bayesian modelling framework"

[4] Martyn Plummer (2003) – "JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling"

Intro to Bayesian inference

Random variable

 \rightarrow A variable whose values depend on outcomes of a random event^[5].

 \rightarrow e.g. Let Y = amount of time (in days) before we observe false positive from a PCR test.

- \longrightarrow $y \in Y$ is an observation of Y.
- \rightarrow Let θ = mean days.
- **Goal of statistical inference:** obtain an estimate ($\hat{\theta}$) for the true θ .
- A random variable is associated with a function called
 'probability density function (pdf)'

 - $\rightarrow pdf$ assigns a probability density $\in \mathbb{R}$ to each possible observation $y \in Y$.

$$\longrightarrow Y \sim Exp(\theta), p(y) = \frac{1}{\theta}e^{-\frac{1}{\theta}y}$$

Intro to Bayesian inference

Frequentist vs. Bayesian

- \rightarrow <u>Frequentists</u>: θ is a fixed (constant) value.
 - \rightarrow Goal: Infer how different $\hat{\theta}$ is from a hypothesized θ_0 (e.g. $H_0: \hat{\theta} \theta_0 = 0$)
 - Bayesian: θ is a **random variable**. (i.e. θ has its own probability dist'n)
 - \rightarrow Goal: Make inference about heta by obtaining p(heta|data) using 'Bayes rule'.

$$p(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(data)} = \frac{p(data|\theta)p(\theta)}{\int p(data|\theta)p(\theta) d\theta} \qquad Posterior = \frac{Likelihood \times Prior}{Normalizing \ constant} \propto Likelihood \ \times \ prior$$

- \rightarrow **Posterior distribution** $p(\theta | data)$: The distribution of θ conditioned on the observations.
- Prior distribution $p(\theta)$: Our belief about the distribution of θ before observing the outcomes.
- \rightarrow Likelihood $p(data|\theta)$: Joint probability of the observed data as a function of θ .
- \rightarrow Normalizing constant p(data): A constant that reduces a function to a probability function.
 - ightarrow Usually difficult (often impossible) to compute.

Intro to Bayesian inference

Bayesian inference: difficulties

 $p(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(data)} = \frac{p(data|\theta)p(\theta)}{\int p(data|\theta)p(\theta) \, d\theta}$

 $Posterior = \frac{Likelihood \times Prior}{Normalizing \ constant} \propto Likelihood \ \times \ prior$

 \longrightarrow Bayesian inference about heta used to be a very difficult process before PP.

ightarrow Difficult to derive the exact posterior distribution analytically.

 \longrightarrow High computational complexity.

Computational method: inference by sampling

Markov Chain Monte Carlo (MCMC)

 \to If we can (somehow) acquire enough samples from the posterior distribution, then we can easily obtain $\widehat{ heta}$.

—— Default algorithm in STAN, BUGS, JAGS, etc.

A sequence of possible events in which the probability of each event depends only on the state attained in the previous event^[6].

Monte Carlo method

A broad class of algorithms that rely on repeated random sampling to obtain numerical results^[7].

- 1) Randomly draw a coordinate (x, y) where $x \in [0,1]$ and $y \in [0,1]$
- 2) If $r = \sqrt{x^2 + y^2} \le 1$, plot it red. Otherwise, plot it blue. (a.k.a *rejection sampling*)
 - 3) Repeat 1-2 N times.

$$\hat{A} = \frac{\sum (red \ dots)}{N} \times 4 \approx \pi \ (as \ N \to \infty)$$

[6] Paul Gagniuc (2017) – "Markov chains: from theory to implementation and experimentation" [7] Kroese et al. (2014) – "Why the Monte Carlo method is so important today"

```
Markov Chain Monte Carlo (MCMC)
```

 \rightarrow Sampling algorithm used in probabilistic programming packages (STAN, BUGS, JAGS).

 \longrightarrow Constructs a **Markov chain** $\theta_1, \theta_2, \dots, \theta_N$ whose *stationary distribution* is some distribution $P(\cdot)$.

A distribution $P(\cdot)$ is 'stationary' if

 $\theta_{t+1} \leftarrow t(\theta_t)$ where $\theta_t \sim P$ and $\theta_{t+1} \sim P$

 $\rightarrow t(\cdot)$: transition distribution that moves one state to another state.

 $\rightarrow \theta_{t+1}$ is drawn randomly from $t(\theta_t)$ (hence **Monte Carlo**)

 $\longrightarrow \hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} \theta_i$ (With a large N)

 \rightarrow

 \longrightarrow

Metropolis-Hastings algorithm^[8]

 \rightarrow Let $P(\cdot)$: The distribution of interest we want to sample from, but hard to do so directly. (i.e. posterior)

 \longrightarrow Target distribution $f(\cdot)$: a function that $P(\cdot) \propto f(\cdot)$ and the value of $f(\cdot)$ can be computed. (i.e. likelihood × prior)

 \longrightarrow <u>Proposal distribution</u> $q(\theta'|\theta)$: an arbitrary dist'n that we can easily sample from. (e.g. Normal, Uniform, etc)

 \to Intuition: Explore Θ via (educated) random walk provided by $q(\cdot)$, collect $\theta' \in \Theta$ that gives high $f(\theta')$

1) Draw a candidate $heta' \sim q(heta'| heta_t)$ (for example, $N(heta_t, \sigma^2)$)

 $\begin{array}{l} \longrightarrow \\ 2) \text{ Compute the acceptance probability: } A(\theta', \theta) = \min\{\frac{f(\theta')}{f(\theta_t)} \times \frac{q(\theta_t | \theta')}{q(\theta' | \theta_t)}, 1\} & (\text{i.e.} A(\theta', \theta_t) \in [0,1]) \\ \end{array} \\ \begin{array}{l} \text{Burr} \\ \text{(di} \\ \text{(di)} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{pmatrix} \\ 3) \text{ Set } \theta_{t+1} = \begin{cases} \theta' & \text{if } A \ge c \sim Unif(0,1) \\ \theta_t & \text{if } A < c \sim Unif(0,1) \\ \end{array} \\ \begin{array}{l} \theta \\ \end{array} \\ \begin{array}{l} \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \text{A} \\ \text{A} \\ \text{Popeat 1-3 N times. Use the accepted candidates in later sequences for } \hat{\theta}. \end{cases}$

Works because
$$P(\cdot) \propto f(\cdot), \frac{P(\theta')}{P(\theta_t)} = \frac{f(\theta')}{f(\theta_t)},$$

Limitation: can be very slow for multidimensional $\Theta = (\theta_1, \theta_2, ..., \theta_N)$ because of low $A(\theta', \theta_t)$

Gibbs sampler^[9]

- ightarrow Default algorithm for BUGS and JAGS.
- ightarrow Useful in multidimensional cases.

$$\longrightarrow \qquad \text{Draw } \theta_3^{(1)} \sim p(\theta_3 | \theta_1^{(1)}, \theta_2^{(1)}, X). \text{ Now we have } \Theta^{(1)} = \left(\theta_1^{(1)}, \theta_2^{(1)}, \theta_3^{(1)}\right)^T$$

Pick a random starting vector $\Theta^{(0)} = \left(\theta_1^{(0)}, \theta_2^{(0)}, \theta_3^{(0)}\right)^T$

 \longrightarrow Repeat until we get $\Theta^{(M)}$

 \rightarrow Need to derive full conditional distribution of each θ : $p(\theta_j | \theta_{-j}, X)$

Often impossible.

ightarrow Sometimes fails to mix.

 $p_{cc} \sim \text{Beta}(a_{p_{cc}}, b_{p_{cc}})$ $S_{sen} \sim \text{Beta}(a_{S_{sen}}, b_{S_{sen}})$ $S_{spec} \sim \text{Beta}(a_{S_{spec}}, b_{S_{spec}})$ $\tau \sim \text{Truncated Normal}(0, \infty; a_{\tau}, b_{\tau})$ $\tau_{0} \sim \text{Truncated Normal}(0, \infty; a_{\mu}, b_{\mu})$ $\eta \sim \text{Truncated Normal}(0, \infty; a_{\eta}, b_{\eta}).$

MH & Gibbs sampler: limitation

- Markov chains take small steps.
 - \rightarrow Parameter space is under-explored.
- More problematic in multi-modal cases.
 - The chain can get stuck in one mode instead of being able to jump across multiple modes.
 - Longer run time to mix, Unstable $\widehat{\Theta}$.

Key to successful MCMC

ightarrow Good proposal & good prior: there is no general rule.

- Hamiltonian Monte Carlo (HMC)^[10]
- \rightarrow Default algorithm for STAN.
- Makes better proposals. Known to mix much faster than MH or Gibbs sampler.
- Intuition from Hamiltonian dynamics in physics.

Hamiltonian Monte Carlo (HMC)

$$\longrightarrow H(\theta, p) = U(\theta) + K(p) = -\ln f(\theta) + \frac{1}{2}p^T M^{-1}p$$

 $\longrightarrow \quad \text{Draw } p^{(0)} \sim MVN(0, M)$

 \rightarrow

 \longrightarrow M^{-1} : 'Inverse mass'. Symmetric and positive definite (Stan: diagonal estimate of the covariance computed during warmup) \rightarrow For (*i* in 1: *L*):

 $\longrightarrow \qquad p^{(i)} \leftarrow p'^{(i-1)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln \left(f(\theta^{(i-1)}) \right)$

$$\longrightarrow \qquad \theta^{(i)} \leftarrow \theta^{(i-1)} + \varepsilon M^{-1} p^{(i)}$$

$$\longrightarrow p^{\prime(i)} \leftarrow p^{(i)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln\left(f(\theta^{(i)})\right)$$

$$\longrightarrow A(\theta^{(L)}, \theta_t) = \min\left\{\frac{\exp\left[-H(\theta^{(L)}, p^{\prime(L)})\right]}{\exp\left[-H(\theta_t, p^{(0)})\right]}, 1\right\}$$

$$\longrightarrow \quad \theta_{t+1} = \begin{cases} \theta^{(L)} & \text{if } A \ge r \sim Unif(0,1) \\ \theta_t & \text{if } A < r \sim Unif(0,1) \end{cases}$$

Distribution for 1 Parameter Model

Hamiltonian Monte Carlo: example

 \rightarrow

Markov Chain Monte Carlo (MCMC)

[11] Alan Malony – (YouTube video) "Hamiltonian Monte Carlo For Dummies"

Hamiltonian Monte Carlo: example

- e.g. one-dimensional case: $\theta \sim N(0,1)$, $p \sim N(0,1)^{[11]}$
- \longrightarrow 1) Set initial value for θ_t (e.g. θ_t =-1.75)
- \longrightarrow 2) Set initial value for p_t (e.g. p_t =1.00)
- \rightarrow 3) Travel around the contour using the Hamiltonian equation.
 - \longrightarrow Hyperparameters: L (number of steps), arepsilon (step size)
 - \rightarrow Here, L = 15, $\varepsilon = 0.3$
 - 4) At the end of the trajectory, compute the acceptance prob. using $\theta^{(L)}$, $p^{(L)}$, θ_t , p_t , and set θ_{t+1} accordingly.
 - 5) Repeat 2-4 until we get desired number of samples.

Markov Chain Monte Carlo (MCMC)

How do we select L and ε ?

STAN uses 'NUTS' (No U-Turn Sampler) as a default HMC algorithm which includes L and ε optimization.

Hamiltonian Monte Carlo: bimodal case ^[12]

 \rightarrow

[12] Alex Rogozhnikov – (GitHub page) "Hamiltonian Monte Carlo explained"
[13] Ben Lambert – (YouTube video) "The intuition behind the Hamiltonian Monte Carlo algorithm"

Summary

 \rightarrow

Probabilistic programming

- ightarrow Method to automate Bayesian inference.
 - No need for manually coding a sampler.

Bayesian inference

 $\longrightarrow p(\theta | data) = \frac{p(data|\theta)p(\theta)}{p(data)} \propto p(data|\theta)p(\theta)$

Metropolis-Hastings & Gibbs sampler

 \rightarrow Under-representation of the posterior \rightarrow longer run time, unstable estimation.

Hamiltonian Monte Carlo

- Default for RStan: creates an HMC sampler from a Bayesian model.
- Gradient-based proposal. Posterior dist'n is better represented, faster convergence.

References

- [1] Hakaru (GitHub page) "What is probabilistic programming"
- [2] Carpenter et al. (2017) "Stan: a probabilistic programming language"
- [3] Lunn et al. (2000) "WinBUGS: a Bayesian modelling framework"
- [4] Martyn Plummer (2003) "JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling"
- [5] Blitzstein and Hwang (2014) "Introduction to Probability"
- [6] Paul Gagniuc (2017) "Markov chains: from theory to implementation and experimentation"
- \longrightarrow [7] Kroese et al. (2014) "Why the Monte Carlo method is so important today"
- [8] Wilfred Keith Hastings (1970) "Monte Carlo sampling methods using Markov chains and their applications"
- [9] Stuart and Donald Geman (1984) "Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images"
- [10] Duane et al. (1987) "Hybrid Monte Carlo"
- [11] Alan Malony (YouTube video) "Hamiltonian Monte Carlo For Dummies"
- [12] Alex Rogozhnikov (GitHub page) "Hamiltonian Monte Carlo explained"
- [13] Ben Lambert (YouTube video) "The intuition behind the Hamiltonian Monte Carlo algorithm"