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3. Poisson Processes

Exponential Distribution

Definition: The continuous RV X has the exponential

distribution with parameter λ if its p.d.f. is f(x) =

λe−λx, x ≥ 0.

Facts: F (x) = 1 − e−λx, x ≥ 0.

E[X] = 1/λ, Var(X) = 1/λ2,

MX(t) = λ/(λ − t), t < λ.

2



3. Poisson Processes

Theorem: The exponential distribution has the mem-

oryless property . Namely, for s, t > 0,

Pr(X > s + t|X > t) = Pr(X > s).

Example: If X ∼ Exp(1/10), then

Pr(X > 10|X > 5) = Pr(X > 5) = e−5/10 = 0.607.

Remark: The exponential is the only continuous dis-

tribution with this property.
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3. Poisson Processes

Definition: For a continuous distribution, the hazard

function (or failure rate) is

r(t) ≡
f(t)

1 − F (t)
.

The hazard function is the conditional p.d.f. that X

will fail at time t (given that X made it to t).
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3. Poisson Processes

Why this interpretation?

r(t) dt =
f(t) dt

1 − F (t)

≈
Pr(X ∈ (t, t + dt))

Pr(X > t)

=
Pr(X ∈ (t, t + dt) and X > t)

Pr(X > t)
= Pr(X ∈ (t, t + dt)|X > t).

Example: X ∼ Exp(λ) implies that r(t) = λ. This

makes sense in light of the memoryless property. In

fact, the Exp(λ) is the only RV with constant r(t).
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3. Poisson Processes

Remark: r(t) (uniquely) determines F (t).

“Proof:”

r(t) =
f(t)

1 − F (t)
= = −

d

dt
`n(1 − F (t)),

so that

F (t) = 1 − exp

(

−
∫ t

0
r(s) ds

)

. ♦
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3. Poisson Processes

Theorem: X1, X2, . . . , Xn
iid
∼ Exp(λ) implies that

n
∑

i=1
Xi ∼ Erlangn(λ) ∼ Gamma(n, λ).

Many proofs — m.g.f.’s, induction, you name it. ♦
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3. Poisson Processes

Poisson Processes

Definition: Consider discrete (non-fractional) events

occurring in continuous intervals (time, length, vol-

ume, etc.). The counting process N(t) ≡ the number

of events occurring in [0, t]. Let the rate λ > 0 be

the average number of occurrences per unit time (or

length or volume).
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3. Poisson Processes

Examples: 1. Cars entering a shopping center (time);

λ = 5/min.

2. Defects on a wire (length); λ = 3/ft.

3. Raisins in cookie dough (volume); λ = 2.6/in3.
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3. Poisson Processes

Definition: A counting process N(t) satisfying the fol-

lowing three assumptions is called a Poisson process

with rate λ (PP(λ)).

(A-1) Arrivals occur one-at-a-time,

(A-2) Independent increments, and

(A-3) Stationary increments.

Details follow. . .
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3. Poisson Processes

(A-1) For any interval of sufficiently small length h,

(a) The prob of one arrival in that interval is

Pr(N(t + h) − N(t) = 1) = λh + o(h)
.
= λh.

(b) The prob of no arrivals is

Pr(N(t + h) − N(t) = 0) = 1 − λh + o(h)
.
= 1 − λh.

(c) The prob of more than one arrival is

Pr(N(t + h) − N(t) ≥ 2) = o(h)
.
= 0,

where o(h) is a function that → 0 faster than h → 0.
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3. Poisson Processes

(A-2) Independent Increments: The numbers of ar-

rivals in two disjoint intervals are independent. I.e., if

a < b < c < d, then N(d) − N(c) and N(b) − N(a) are

independent.

(A-3) Stationary Increments: The number of arrivals

in a time interval depends only on its length. Thus,

N(t + s) − N(t) ∼ N(s) − N(0) for all t.

(A-4) (bonus assumption): N(0) = 0.
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3. Poisson Processes

Example: People arriving to a restaurant is not a PP.

Arrivals occur in groups (violating A-1), and arrival

rates change throughout the day (violating A-3). ♦

Theorem: If N(t) is a PP(λ), then N(t) ∼ Pois(λt).

In particular, N(1) ∼ Pois(1). Further, E[N(t)] =

Var(N(t)) = λt.

Proof: See any reasonable probability text. ♦
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3. Poisson Processes

Remark: Be careful with units of time. For example,

suppose that X ∼ Pois(3) is the number of phone calls

in a one-minute period.

Then the number of calls in a 3-minute period is

Pois(9) and the number in a 30-sec. period is Pois(1.5).
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3. Poisson Processes

Poisson and Exponential Relationship

Definition: Let A1 denote the time until the first ar-

rival of a PP(λ).

For i ≥ 2, let Ai denote the time between the (i−1)st

and ith arrivals.

The Ai’s are called interarrival times.

We can get the distributions of the Ai’s. . .
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3. Poisson Processes

First of all, consider A1.

A1 > t iff no arrivals take place in [0, t]. Thus, for

t > 0,

Pr(A1 > t) = Pr(N(t) = 0) =
e−λt(λt)0

0!
= e−λt,

and so A1 ∼ Exp(λ).
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3. Poisson Processes

Now A2. For 0 < s < t, we have

Pr(A2 > t|A1 = s)

= Pr(no arrivals in (s, s + t]|A1 = s)

= Pr(no arrivals in (s, s + t])

(by independent increments)

= Pr(no arrivals in (s, s + t])

(by stationary increments)

= e−λt (by previous arguments).
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3. Poisson Processes

Thus, Pr(A2 > t|A1 = s) = e−λt for all s.

So Pr(A2 > t) = e−λt, i.e., A2 ∼ Exp(λ), independent

of the value of A1.

This can be generalized. . .

Theorem: A1, A2, . . .
iid
∼ Exp(λ).
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3. Poisson Processes

Definition: The nth arrival time is Sn ≡
∑n

i=1 Ai, n ≥ 1.

Theorem: Sn ∼ Gamma(n, λ) ∼ Erlangn(λ). Thus,

E[Sn] = n/λ and Var(Sn) = n/λ2.

Example: A UGA student can read X ∼ Pois(1) pages

of Dick and Jane a day. (a) The expected time until

the 10th page is completed is E[S10] = n/λ = 10 days.

(b) The prob that it takes > 2 days to read the 11th

page is Pr(A11 > 2) = e−2 .
= 0.135. ♦
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3. Poisson Processes

Theorem: Consider a PP(λ), N(t). Suppose arrivals

are either Type I or II (e.g., male or female), with

Pr(Type I) = p, Pr(Type II) = 1 − p. Let N1(t) and

N2(t) denote the numbers of Type I and II events

during [0, t]. Note that N(t) = N1(t) + N2(t).

Then N1(t) and N2(t) are independent PP’s with resp.

rates λp and λ(1 − p).

Proof: Long and tedious. See, e.g., Ross. ♦

20



3. Poisson Processes

Example: Suppose cars entering a parking lot follow a

PP(5/min). Further, suppose the prob that a driver is

female is 0.6. Find the prob that exactly 3 cars driven

by females will enter the lot in the next 2 minutes.

The # of cars entering in two min. ∼ Pois(λt = 10).

The # driven by females is Pois(λtp = 6).

So the desired prob is

Pr(Pois(6) = 3) =
e−663

3!
= 0.0892. ♦
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3. Poisson Processes

Conditional Distribution of Arrival Times

Theorem: Pr(A1 < s|N(t) = 1) = s
t.

In other words, suppose we know that one arrival has

occurred by time t, i.e., N(t) = 1. What’s the (con-

ditional) distribution of the time of that arrival? An-

swer: Unif(0, t)!
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3. Poisson Processes

Proof: We have

Pr(A1 < s|N(t) = 1)

=
Pr(A1 < s and N(t) = 1)

Pr(N(t) = 1)

=
Pr(1 arrival in [0, s]; none in (s, t])

Pr(N(t) = 1)

=
Pr(1 arrival in [0, s]) Pr(none in (s, t])

Pr(N(t) = 1)
(by independent increments)

=
Pr(N(s) = 1) Pr(N(t) − N(s) = 0)

Pr(N(t) = 1)
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3. Poisson Processes

Proof (cont’d): Then

Pr(A1 < s|N(t) = 1)

=
Pr(N(s) = 1)Pr(N(t − s) = 0)

Pr(N(t) = 1)
(by stationary increments)

=
e−λs(λs)1

1!

e−λ(t−s)(λ(t − s))0

0!

/

e−λt(λt)1

1!

= s/t. ♦
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3. Poisson Processes

Can generalize above result. . .

Theorem: Given that N(t) = n, the joint probability

distribution of the n arrival times S1, S2, . . . , Sn is the

same as the joint distribution of n i.i.d. Unif(0, t) RV’s.

Thus, if we know that n arrivals have occurred by

time t, the arrivals can be treated as if they were i.i.d.

Unif(0, t).
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3. Poisson Processes

Bonus Theorem: Consider a PP(λ), N(t). Suppose

there are k possible types of arrivals. Further suppose

that the prob that an arrival is of Type i depends

on the time that it occurs — if it occurs at time t,

then the probability that it’s a Type i is Pi(t), where
∑k

i=1 Pi(t) = 1. If Ni(t) denotes the number of Type i

arrivals by time t, then the Ni(t)’s, i = 1,2, . . . , k, are

independent Poisson RV’s with means

E[Ni(t)] = λ
∫ t

0
Pi(s) ds.

Proof: Ross. ♦
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3. Poisson Processes

Generalizations

Definition: The counting process N(t) is a nonhomo-

geneous PP with intensity function λ(t) if it satisfies:

(A-1′) Arrivals occur one-at-a-time. In particular,

Pr(N(t + h) − N(t) = 1) = λ(t)h + o(h) and

Pr(N(t + h) − N(t) = 0) = 1 − λ(t)h + o(h)

(A-2) Independent increments.

(A-4) N(0) = 0.

Note: We don’t require stationary increments.
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3. Poisson Processes

Fact: N(t + s) − N(t) ∼ Pois
(

∫ t+s
t λ(x) dx

)

.

Remark: Arrivals may be more (or less) likely to oc-

cur as time progresses in a NHPP, since there is no

stationarity requirement.
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3. Poisson Processes

Example: Distribution of cars arriving to a lot as the

day progresses is a NHPP. From 8:00–11:00 a.m.,

cars arrive at a steadily increasing rate: 5 cars/hr at

8:00 a.m. to 20 cars/hr at 11:00 a.m. I.e., λ(t) =

5 + 5t, 0 ≤ t ≤ 3 hrs.

Number of arrivals between 8:30–9:30 a.m. is

N(1.5)−N(0.5) ∼ Pois

(

∫ 1.5

0.5
(5 + 5x) dx

)

∼ Pois(10).

♦
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3. Poisson Processes

Definition: A stochastic process X(t) is a compound

PP if it can be written as

X(t) =
N(t)
∑

i=1
Yi, t ≥ 0,

where N(t) is a PP(λ) and the Yi’s are i.i.d. and inde-

pendent of N(t).

Facts: E[X(t)] = E[N(t)]E[Y1] = λtE[Y1] and

Var(X(t)) = λtE[Y 2
1 ].
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3. Poisson Processes

Example: If the Yi’s all equal 1, then X(t) = N(t),

the usual PP.

Example: Customers leave a market according to a

PP. Let Yi be the amount spent by customer i. If

X(t) is the total amount spent by time t, then X(t)

is a compound PP.
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3. Poisson Processes

Example: A FB player makes Pois(λ = 2) scores/game.

Pr(score = x) =















1/6 if x = 1
1/3 if x = 3
1/2 if x = 6

Let Yi be the value of the ith score. E[Yi] = 25
6 ,

E[Y 2
i ] = 127

6 . Let X(t) be the total points scored in t

games.

E[X(5)] = λtE[Y1] = 125/3,

Var(X(t)) = λtE[Y 2
1 ] = 635/3. ♦
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