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3. Poisson Processes

Exponential Distribution

Definition: The continuous RV X has the exponential
distribution with parameter X\ if its p.d.f. is f(z) =
Ae x> 0.

Facts: F(z) =1—e %, > 0.
E[X] =1/ Var(X) = 1/)2,
Mx(#) = A/(A—1), t < A.



3. Poisson Processes

Theorem: The exponential distribution has the mem-

oryless property. Namely, for s,t > O,

Pr(X >s+t|X >t) = Pr(X > s).

Example: If X ~ Exp(1/10), then

Pr(X > 10/X >5) = Pr(X >5) = ¢ %19 = 0.607.

Remark: The exponential is the only continuous dis-

tribution with this property.



3. Poisson Processes

Definition: For a continuous distribution, the hazard
function (or failure rate) is

0N
1— F(t)
The hazard function is the conditional p.d.f. that X
will fail at time t (given that X made it to t).

r(t) =




3. Poisson Processes

Why this interpretation?

f(t)dt
1 — F(t)
Pr(X € (t,t+ dt))
Pr(X > t)
Pr(X e (t,t+dt) and X >1t)
Pr(X >t)
Pr(X € (t,t + dt)| X > t).

r(t)dt =

Q

Example: X ~ Exp(M\) implies that »(¢t) = A. This
makes sense in light of the memoryless property. In
fact, the Exp()\) is the only RV with constant r(¢).
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Remark: r(t) (uniquely) determines F'(t).
“Proof:”

f@& _ién(l—F(t)),

"0 = TR dt

sO that

F(t) = 1—exp<—/ot'r(s)ds>. %



3. Poisson Processes

Theorem: X1,Xo,...,Xn i Exp(A) implies that

n
> X, ~ Erlang,(A) ~ Gamma(n, ).
i=1

Many proofs — m.g.f.’s, induction, you name it. $
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Poisson Processes

Definition: Consider discrete (non-fractional) events
occurring in continuous intervals (time, length, vol-
ume, etc.). The counting process N(t) = the number
of events occurring in [0,t]. Let the rate X > 0 be
the average number of occurrences per unit time (or

length or volume).



3. Poisson Processes

Examples: 1. Cars entering a shopping center (time);

A = 5/min.
2. Defects on a wire (length); A = 3/ft.

3. Raisins in cookie dough (volume); X\ = 2.6/in3.



3. Poisson Processes

Definition: A counting process N (t) satisfying the fol-
lowing three assumptions is called a Poisson process
with rate A (PP())).

(A-1) Arrivals occur one-at-a-time,
(A-2) Independent increments, and

(A-3) Stationary increments.

Details follow. ..
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(A-1) For any interval of sufficiently small length h,

(a) The prob of one arrival in that interval is

Ah.

Pr(N(t+h) —N(t) =1) Ah 4+ o(h)
(b) The prob of no arrivals is
Pr(N(t+h) —N({#)=0) = 1—Ah+o(h) = 1— \h.
(c) The prob of more than one arrival is

Pr(N(t4h) — N(t) >2) = o(h) = O,

where o(h) is a function that — O faster than A — 0.
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(A-2) Independent Increments: The numbers of ar-
rivals in two disjoint intervals are independent. l.e., if
a<b<ec<d, then N(d) — N(¢c) and N(b) — N(a) are

independent.

(A-3) Stationary Increments: The number of arrivals
In a time interval depends only on its length. Thus,
N(t+s)—N()~ N(s)— N(0) for all t.

(A-4) (bonus assumption): N(0) = 0.
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Example: People arriving to a restaurant is not a PP.
Arrivals occur in groups (violating A-1), and arrival

rates change throughout the day (violating A-3). &

Theorem: If N(t) is a PP()\), then N(t) ~ Pois(\t).
In particular, N(1) ~ Pois(1). Further, E[N(t)] =
Var(N(t)) = At.

Proof: See any reasonable probability text. $
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Remark: Be careful with units of time. For example,
suppose that X ~ Pois(3) is the number of phone calls

In @ one-minute period.

Then the number of calls in a 3-minute period is

Pois(9) and the number in a 30-sec. period is Pois(1.5).
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Poisson and Exponential Relationship

Definition: Let A7 denote the time until the first ar-
rival of a PP(\).

For i > 2, let A; denote the time between the (i —1)st

and 2th arrivals.

The A;'s are called interarrival times.

We can get the distributions of the A;’s. ..
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First of all, consider A;.

A1 > t iff no arrivals take place in [0,t]. Thus, for

t >0,

Q_At()\t)o _ 2\t

Pr(A1 >t) = Pr(N() =0) = o e ',

and so Ay ~ Exp()\).
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Now As. For O < s <t, we have

Pr(A> > t|A1 = S)

= Pr(no arrivals in (s,s +t]|A1 = s)

= Pr(no arrivals in (s,s 4+ t])
(by independent increments)

= Pr(no arrivals in (s,s 4+ t])
(by stationary increments)

e~ (by previous arguments).
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3. Poisson Processes
Thus, Pr(As > t|A; = s) = e~ for all s.

So Pr(A> >t) = e M, i.e., A> ~ Exp()\), independent

of the value of A;.
This can be generalized. ..
Theorem: Aq, Ao, ... g Exp()).
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3. Poisson Processes
Definition: The nth arrival timeis S, =¥ A;, n > 1.

Theorem: S, ~ Gamma(n,\) ~ Erlang,(\). Thus,
E[Sn] = n/X and Var(Sy) = n/\2.

Example: A UGA student can read X ~ Pois(1) pages
of Dick and Jane a day. (a) The expected time until
the 10th page is completed is E[S1p] = n/X\ = 10 days.
(b) The prob that it takes > 2 days to read the 11th
page is Pr(A{1 >2) =e2=0.135. <
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Theorem: Consider a PP()\), N(t). Suppose arrivals
are either Type I or II (e.g., male or female), with
Pr(Typel) = p, Pr(Typell) =1 —p. Let Ny1(¢t) and
N->(t) denote the numbers of Type I and II events
during [0,t]. Note that N(t) = N1(t) + No(t).

Then Nq(t) and N»(t) are independent PP’'s with resp.
rates A\p and A(1 — p).

Proof: Long and tedious. See, e.g., Ross. >
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Example: Suppose cars entering a parking lot follow a
PP(5/min). Further, suppose the prob that a driver is
female is 0.6. Find the prob that exactly 3 cars driven
by females will enter the lot in the next 2 minutes.

The # of cars entering in two min. ~ Pois(At = 10).
The # driven by females is Pois(Atp = 6).

So the desired prob is

e 663
Pr(Pois(6) =3) = 3 T 0.0892. <&
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3. Poisson Processes
Conditional Distribution of Arrival Times
Theorem: Pr(A; <s|N(t)=1) =3.

In other words, suppose we know that one arrival has
occurred by time ¢, i.e., N(t) = 1. What's the (con-
ditional) distribution of the time of that arrival? An-

swer: Unif(0,t)!
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Proof: We have

Pr(A; < s|N(t) =1)

Pr(A1 <sand N(t) = 1)
- Pr(N(t) = 1)

Pr(1 arrival in [0, s]; none in (s,t])
Pr(N() =1)

Pr(1 arrival in [0, s]) Pr(none in (s,t])
Pr(N() =1)
(by independent increments)
Pr(N(s) =1) Pr(N(t) — N(s) =0)
Pr(N() =1)
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Proof (cont’'d): Then

Pr(A; < s|N(t) = 1)

Pr(N(s) =1)Pr(N(t—s)=0)

Pr(N(t)=1)
(by stationary increments)

6_)‘8()\8)1 e—A(t—s)(A(t _ 8))0 e_>‘t()\t)1
1! 0! / 1!

s/t. &
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Can generalize above result. . .

Theorem: Given that N(t) = n, the joint probability
distribution of the n arrival times S51,5->,...,5, is the
same as the joint distribution of ni.i.d. Unif(0,t) RV's.

Thus, if we know that n arrivals have occurred by

time ¢, the arrivals can be treated as if they were i.i.d.

Unif(0,¢).
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Bonus Theorem: Consider a PP()\), N(t). Suppose
there are k possible types of arrivals. Further suppose
that the prob that an arrival is of Type 7 depends
on the time that it occurs — if it occurs at time ¢,
then the probability that it's a Type 7 is P;(t), where
Zéﬁ:l P;(t) = 1. If N;(t) denotes the number of Type i
arrivals by time ¢, then the N;(¢)'s, i =1,2,...,k, are

independent Poisson RV's with means
t
E[N;(t)] = ) /O Pi(s) ds.

Proof: Ross. &>
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Generalizations

Definition: The counting process N(t) is a nonhomo-
geneous PP with intensity function \(t) if it satisfies:
(A-1") Arrivals occur one-at-a-time. In particular,

Pr(N(t+h) —N(({t)=1)
Pr(N(t+h) — N(t) =0)

A(t)h 4+ o(h) and
1 —X()h 4+ o(h)

(A-2) Independent increments.
(A-4) N(0) = 0.

Note: We don't require stationary increments.
27
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Fact: N(t 4+ s) — N(t) ~ Pois (f§+5/\(az) d:z;).

Remark: Arrivals may be more (or less) likely to oc-

cur as time progresses in a NHPP, since there is no

stationarity requirement.
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Example: Distribution of cars arriving to a lot as the
day progresses is a NHPP. From 8:00-11:00 a.m.,
cars arrive at a steadily increasing rate: 5 cars/hr at
8:00 a.m. to 20 cars/hr at 11:00 a.m. Ile., \(t) =
545t 0<t< 3 hrs.

Number of arrivals between 8:30—9:30 a.m. is

N(1.5)—N(0.5) ~ Pois (/()1.'55(54—5:13) dac) ~ Pois(10).

&
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Definition: A stochastic process X (¢) is a compound

PP if it can be written as

N(t)
X(t) = 3 Vi, t>0,
1=1

where N(t) is a PP()\) and the Y;'s are i.i.d. and inde-
pendent of N(t).

Facts: E[X(¢)] = E[N(¢t)]E[Y71] = ME[Y7] and
Var(X (t)) = ME[YZ].
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Example: If the Y;'s all equal 1, then X(t) = N(¢t),
the usual PP.

Example: Customers leave a market according to a
PP. Let Y, be the amount spent by customer :. If
X (t) is the total amount spent by time ¢, then X (¢t)

IS a compound PP.

31



3. Poisson Processes

Example: A FB player makes Pois(A = 2) scores/game.

(1/6 ife=1
Pr(score =z) = ¢ 1/3 ifx =3
| 1/2 ifx =06
Let Y; be the value of the ith score. E[Y;] = %5,
E[Y;?] = 127, Let X(¢) be the total points scored in ¢
games.

E[X(5)] = ME[Yi] = 125/3,

Var(X(¢)) = ME[Y?] = 635/3. &
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