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Abstract

The Southern Resident Killer Whale (SRKW) is an endangered population of killer whales

that is present in the Salish Sea. This fish-eating predator has been heavily impacted by

human activities in the region, particularly by commercial vessels in shipping lanes that

traverse federally-designated SRKW critical habitat. Forecasting the movement trajectories

of these whales would help provide early warning alerts to slow down or reroute commercial

vessels, and reduce the risks of ships overlapping with whale presence. In this study, we de-

velop a stochastic animal movement model that is guided by a historical database of sighting

records of SRKW. Specifically, we make use of a continuous-time Ornstein-Uhlenbeck (O-

U) velocity process that provides the basis for a movement forecast system and simulates

realizations of SRKW velocities and trajectories given initial conditions. However, if the

forecast system were to simply rely on the O-U velocity process alone, it would steer simu-

lated whale trajectories to areas where SRKWs are rarely found. To address this, we propose

a direction blending scheme to project the simulated velocities in more realistic directions.

It makes use of historical directional information along with the O-U velocity process to

create more probable pathways consistent with observed SRKW movement patterns. By

integrating the simulated trajectories generated from the simulated velocities, we establish

a dynamic probability-based forecast scheme that demonstrates skill in forecasting SRKW

trajectories on a time-scale that aligns with the time to slow and reroute commercial vessels.

Keywords: Southern Resident Killer Whales; Animal movement modelling; Continuous-

time model; Directional persistence; Trajectory forecast
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Chapter 1

Introduction

The Southern Resident Killer Whale (SRKW), Orcinus Orca, is a population of killer whales

listed as ‘endangered’ in Canada and the United States. SRKWs inhabit the waters of the

northeastern Pacific Ocean and are present year-round, but more prevalent in the Salish Sea

(Fig 1.1) from spring to fall [13]. The SRKW is also a highly social animal in which closed

family groups form one of three pods (J, K, and L pod), and whales belonging to the same

pod tend to move together. Evidence suggests that the noise and physical disturbance from

commercial vessels alters the movement of SRKWs[25, 26, 39, 33, 18]. Waters such as the

Haro Strait, Boundary Pass, and Active Pass are busy shipping lanes that connect Canadian

and American Pacific Ports with the Pacific Ocean. There are over 10,000 vessels annually

operating in the Salish Sea [10], which pose an important threat to SRKWs through acoustic

and physical disturbance [18, 38, 35]. However, if ship pilots can adjust their paths and/or

reduce their speeds before approaching killer whales, the noise footprint and the risk of

vessel collisions with SRKW are reduced. Forecasting the trajectories of moving SRKWs

or probable regions where SRKW may be present can reduce the impacts of commercial

shipping by alerting ship pilots and providing enough time to change the ships speed and

direction. The core tool needed to do this is a statistical dynamical whale movement model

that can forecast the trajectories of an SRKW pod on time-scales of an hour or more.

Development of this SRKW forecasting model is the central objective of this thesis.

Animal movement modelling has been widely used in ecological research to understand

the behaviours of animals and predict their trajectories. There have been two major ap-

proaches used in animal movement modelling: discrete-time and continuous-time models
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[22, 14]. Discrete-time models are an intuitive choice and have been widely used in animal

movement research [23, 21, 11]. They are popular because they are straightforward to apply

with simulation procedures that are typically discrete [14], and there are abundant statistical

techniques for their implementation such as the correlated random walk proposed by Clif-

ford et al. [29] as well as various standard time series models that can be applied. However,

true animal movement patterns are continuous in both time and space and thus, discrete-

time models do not reflect the reality of animal movement [14]. In addition, discrete-time

models are problematic for irregularly sampled data [17, 11] because observation times may

not match the time steps of the models, and data may need to be thinned or interpolated to

match the discrete time step [6, 17, 11]. In contrast, continuous-time models allow us to di-

rectly use raw data by defining animal movement as a stochastic process which is controlled

by scale-invariant parameters that can be estimated under irregularly sampled data and

various time steps [17, 21, 9, 11, 14]. Therefore, even though continuous-time models will

generally be discretized for numerical solutions in computers, it is still worth constructing

animal movement models from a continuous-time perspective [14].

The Ornstein-Uhlenbeck Process (O-U Process) proposed by Ornstein and Uhlenbeck

[36] is one of the most commonly used continuous-time models that describes a Gaussian

stationary process composed of a mean-reverting process and random fluctuations, or the

Wiener process. The O-U process can be used to model either animal positions or velocities

[30]. For the position-based O-U process, the random variable is animal positions, and the

O-U process model represents the instantaneous change in position, which is velocity. The

mean-reverting process implies that the movement of animals will be steered towards specific

locations such as their core habitat or foraging areas [31]. The velocity-based O-U process

uses a random variable corresponding to animal velocity and models the instantaneous

change in velocity, which is acceleration. Since velocity is the prognostic variable, the animal

position must be obtained by integrating the velocity process [30].

The O-U process has been applied to simulate a variety of animal movements including

marine mammals [11]. For example, Brillinger et al. [5] integrated the O-U process on the

surface of a sphere to model the migration of elephant seals (Mirounga angustirostris).
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Johnson et al. [17] utilized the O-U velocity process within a state-space framework to

analyze the movement of harbour seals (Phoca vitulina) and northern fur seals (Callorhinus

ursinus). For our target species, Randon et al. [32] pioneered an SRKW movement forecast

framework that used the velocity-based O-U process within a state-space framework with

data assimilation to forecast the trajectories of SRKWs. This data assimilative SRKW

movement forecast was demonstrated to have predictive skill out to 2.5 hours when applied

to a single test case in the Salish Sea.

Although the approach of Randon et al. [32] worked well for a single trajectory, it was

not expanded to forecast trajectories in other regions of the Salish Sea and did not provide a

comprehensive movement modelling simulator. In addition, it did not statistically estimate

each parameter in the O-U process, instead specifying them by assumptions. Furthermore,

the framework used the gradient of potential functions defined by monthly sighting data

to indicate the mean velocity in the mean-reverting process in the O-U process. Potential

functions are a physical concept to illustrate the motion of particles in Newtonian dynamics

[3, 31]. The mean-reverting process in the position-based O-U process can be character-

ized by the gradient of a potential function [4], which assumes animals tend to move along

the gradient of a potential field (i.e., from low potential to high potential). Following this

concept, potential functions can also be used to control the direction or speed of motion of

animals [3]. For example, if preferred habitats are assumed to have high potential and current

locations are found in an area of low potential, animals will move along the gradient toward

the high-potential valued habitat. Note that the potential function in the position-based

O-U process is a velocity potential, aligning with the unit of what is modelled: instanta-

neous change in position. However, in the velocity-based O-U process, the mean-reverting

process steers velocity toward a specified velocity, instead of directly to preferable positions.

Therefore, steering trajectories toward preferable positions by controlling the velocity-based

O-U process is more complicated. The most key issue is that the potential function inserted

in the velocity-based O-U process is an acceleration potential, aligning with the unit of

what is modelled: the instantaneous change in velocity, which requires more high-quality

and precise position datasets. Therefore, it is worth finding an alternative method to steer
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the trajectories generated from the velocity-based O-U process to preferable positions. We

will do this via a directional blending approach using historical pathway information.

Building on the research of Randon et al. [32], this thesis is focused on forecasting the

trajectories of SRKWs given an initial location and velocity in the Salish Sea based on the

historical sightings of SRKWs. We applied historical sighting data of SRKWs from the Orca

Master dataset managed by the Whale Museum in Washington, USA to access the histor-

ical trajectories and velocities of SRKWs. Archived (historical) trajectories were compiled

and spatially indexed to provide information about direction across SRKW habitats in the

Salish Sea. Based on the historical velocities, we aimed to simulate realistic trajectories of

SRKWs and propose a preliminary forecast scheme. As mentioned before, SRKWs usually

move with the same pod members, and thus, it is more realistic to forecast the trajectories

of a pod than an individual whale. However, forecasting a pod is challenging because the

information about a pod such as range and pod leaders is dynamic and hard to collect.

Therefore, we will assume that we are simulating the trajectories of a pod leader, and other

SRKWs of the same pod would follow the movement of the pod leader. Based on the histor-

ical velocities, we constructed the velocity-based O-U process as a basis to simulate velocity.

Simultaneously, we solved the issue of estimating the parameters of the velocity-based O-U

process with the historical irregularly sampled velocity data. Then, we established a new

direction-blending method as an alternative to potential functions to guide simulated veloc-

ities in preferred directions based on historical records. In addition, we proposed a coastal

avoidance algorithm to ensure the trajectories integrated from the simulated velocities stay

in the waters. Finally, to test our forecasting system, we predict three trajectories with

different initial locations in the Salish Sea to illustrate our approach.

This thesis report is organized as follows. The Observations and Data Sources chapter

will introduce the historical sighting data of SRKW in the Orca Master dataset curated and

provided by The Whale Museum. The Methods section will dive deeper into the velocity-

based O-U process and introduce the direction-blending method, the coastal avoidance

algorithm, and the SRKW simulation scheme. The implementation and simulation of tra-
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jectories will be presented in the Results chapter. Various aspects of our approach and

findings will be explored in the Discussion chapter.

Figure 1.1: Area of Interest: Transboundary waters at the core of SRKW summer range in-
cluding the Southern Gulf Islands in Canada (North Pender Island: D, Saturna Island: E),
San Juan Islands (San Juan Island=C), and important commercial shipping zones (Bound-
ary Pass: G, Active Pass: H, and Haro Strait: I).
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Chapter 2

Observations and Data Sources

Our observations comprise trajectories of SRKW in the Salish Sea and provide the basis for

both an empirical understanding of SRKW movement in the Salish Sea, as well as guidance

for making a whale movement model capable of successfully forecasting SRKW trajectories.

The dataset and processing steps are outlined below.

2.1 The Orca Master Dataset

We require trajectories and velocities of SRKWs to construct and validate our stochastic

movement model and simulate trajectories. Trajectory information used in this study comes

from the sighting records of SRKWs contained in the Orca Master dataset from 2012 to

2022. These data are curated by the Whale Museum in the US, which is a non-govermental

organization whose mission is to promote stewardship of whales and the Salish Sea ecosystem

through education and research. The sighting records of SRKWs contained in the Orca

Master dataset were collected by many individuals and organizations, including researchers,

citizen scientists, and commercial whale watch vessels. The Whale Museum is responsible

for merging and filtering the sighting observations and maintaining the dataset. Further

details can be found in [27].

There are a total of 7097 SRKW sighting records available between 2012 and 2022. As

shown in Table 2.1, the sighting records in the Orca Master dataset include date, time, pod,

direction of travel, and location [27]. A pod is a closely-related family group of SRKWs

comprised of mothers and their offspring. Currently, SRKWs consist of three pods: desig-

nated J, K, and L [27]. These three pods can sometimes converge, hunt, socialise, mate and
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travel together, and then separate back into their individual pods. Figure 2.1 shows the

locations of all sightings in the Orca Master dataset between 2012 and 2022. The sightings

cover most of the Salish Sea. The locations were recorded as either: (i) positions nearest the

pre-specified Whale Museum quadrants (grids approximately 4.6 km × 4.6 km) or (ii) the

actual positions reported as longitude and latitude and converted to the Universal Trans-

verse Mercator (UTM) coordinate system. Although the coarse-resolution Whale Museum

grids are designed to take measurement errors into consideration and make the dataset eas-

ier to manage, they cause geographical bias when using the data to build statistical models.

We also emphasize that because of the hundreds of citizen scientists who contributed to the

Orca Master dataset and their investment in continuous marine mammal observation efforts

coupled with real-time connections through social media (Facebook, Discord, WhatsApp,

etc), SRKWs are unlikely to be missed if they are indeed present in the Salish Sea. There-

fore, SRKWs can be tracked continuously once they are reported, which provides fairly

precise sighting locations which together allow us to infer the speed and direction of whale

movement.

Date Time Pod Direction Latitude Longitude
2/12/2012 17:00 J W 48.5799 -122.8595
2/12/2012 17:07 J W 48.5248 -122.6544
2/12/2012 17:20 J SW 48.5386 -122.9544

Table 2.1: An example of three rows of the 7097 SRKW sightings in the Orca Master dataset.

2.2 Sighting Density

Based on whale locations plotted in Figure 2.1, we created the sighting density of SRKWs

in the Salish Sea from 2012 to 2022 using kernel density estimation as shown in Figure

2.2. Higher sighting density represents a higher frequency of observing SRKWs, but it is

important to point out that this is influenced by, and confounded with, the concentrated

effort of whale sighters in specific geographical locations. The shoreline and waters around

San Juan Island have the highest sighting density due to a high number of whales and a

high number of human observers. Boundary Pass and Active Pass also have high sighting

densities. Since SRKWs are mainly observed by personnel on vessels and citizen scientists
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Figure 2.1: The sighting records of SRKWs in the Salish Sea from 2012 to 2022. A single
Whale location data in the the Orca Master dataset is plotted with transparency as shown
in the legend. This distinguishes between a single whale at a single location and multiple
sightings reported at the same location where the sightings are represented as an opaque
red point. Grid centroids of The Whale Museum quadrants are associated with multiple
sightings and are particularly visible in Puget Sound in the southern region of the map.

on land, there is sampling bias in the sighting density [37], or a preferential sampling of

whale sightings due to human observer concentration. That is, places with high sighting

density may tell us where active vessels or scientists are, and may not actually indicate

higher chances of observing SRKWs. Places with low sighting density may also have high

chances of SRKW being present but remaining unobserved due to lack of effort. In fact,

because there are so many vessels going through Boundary Pass and Active Pass, along
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Figure 2.2: The sighting density of SRKWs in the Salish Sea from 2012 to 2022.

with co-located live-streaming hydrophones as an additional source of information on ’when’

observers should look, the sighting density in these regions is high. However, even though

sampling bias exists, the whale density is not directly used. Instead, the archived sighting

data provides excellent and valuable information about the direction and velocity of the

SRKW trajectories for use in our study.

2.3 Trajectory Extraction

In this study, we need the historical trajectories of SRKWs and velocities generated from

the trajectories as the inputs to our model. Unfortunately, the most straightforward ap-

proach of simply connecting the sighting records in sequence does not give us reasonable

trajectories. For example, Figure 2.3a shows the results of sequentially connecting all obser-

vations within one day. The pattern is messy and can be difficult to interpret. Moreover, the

displacement between two widely separated locations does not represent a viable route for

9



SRKWs. SKRWs sometimes can widely spread out across dozens of kilometres even though

they belong to the same pod [40]. Therefore, multiple observations can be recorded within

a short time period and be located far from each other. In addition, observations may be

just a single matriline (one mother and her offspring) within a pod may stray away from

other pod members for a short period of time. Therefore some observations should not be

joined together into a trajectory, as they would not represent a true movement trajectory.

Thus, the sighting records must be systematically reordered and split into more realistic

trajectories. A procedure for this is outlined below.

(a) Before reordering and splitting consecutive
SRKW observations

(b) After reordering and splitting consecutive
SRKW locations into realistic trajectories

Figure 2.3: Trajectories from sighting data. By reordering and splitting the sighting records
on the left panel above that suggests an unrealistic trajectory is transformed into the 8
trajectories seen on the right panel constrained to ‘realistic’ speeds, time steps, and to
avoid land.

Although obtaining complete and long trajectories is always desired, we compromise

by isolating shorter trajectories that have reasonable values in terms of both speed and

direction, and are constrained by certain observed limitations so as to be realistic. Assume

there are n sighting records in a day with sighting location xi =
[
x

(i)
1 , x

(i)
2
]T at time ti,

i = 1, ..., n. Here, the first element of the vector represents the east-west coordinate, and
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the second element represents the north-south coordinate. We used the following method

to isolate realistic trajectories from consecutive sighting records.

1. Extract all pod-specific sighting records within the same day, and assign them to the

same trajectory.

2. Assume a time interval between two sighting records greater than 1 hour is too long to

be the same trajectory, and hence break the trajectory into two different trajectories.

3. Assume that a travel speed between two locations should be smaller than a reasonable

value, e.g., <30 km/hr. That is, if ti − ti−1 > 1 hour or ∥xi−xi−1∥
ti−ti−1

> 30 km/hr, xi and

xi−1 belong to two different trajectories.

4. If there is more than one trajectory within an hour and less than 30 km away, the

location xi is connected to the closest trajectory.

5. If there are no trajectories to connect, xi will become the start of a new trajectory. If

there are no following sightings connected behind xi, then xi will be a single uncon-

nected point and not included in any trajectories.

The results of using the trajectory splitting procedure are shown in Figure 2.4. We

managed to separate 1266 possible trajectories from the sighting records database for the

11 years between 2012 and 2022. It is worth noting that this trajectory extraction method is

not perfect but overall seems to work quite well. We may sacrifice some chances to connect

more complete trajectories, and many of the separated trajectories were quite short. In

addition, there are still a few trajectories crossing over land. However, this method is easy

and quick to apply, and the separated trajectories generally maintain the information of

moving direction at different locations, which is helpful in this study. These trajectory

data will be used as the basis for both calibration and validation of the stochastic whale

movement model which is outlined in the next chapter.
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Figure 2.4: The result of creating split trajectories to provide information about the direction
and velocity of SRKW movement in the Salish Sea study area.
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Chapter 3

Methods

We aim to forecast SRKW movement using a stochastic simulation model of whale tra-

jectories given initial locations and directional information. Using the velocities obtained

from historical sightings data derived from the Orca Master database, our approach applies

the Ornstein-Uhlenbeck (O-U) velocity model to simulate realizations of velocities for an

SRKW pod. Note that an O-U process unconstrained by any observational information

will steer simulated trajectories to areas where SRKWs rarely transit. Simply put, the raw

O-U model is too flexible and hence unrealistic. To address this, we incorporate historical

trajectory information to project the velocities in more realistic directions. In addition, it

is necessary to modify the stochastic process model to ensure the trajectories drawn from

the simulated velocities stay in water (i.e. SKRW cannot be permitted to go on land, or

transit over land). In this chapter, we will provide an overview of the O-U velocity model,

the direction-blending method to project velocities, and the coastal avoidance algorithm

to maintain trajectories in water, and present examples of the whale simulation scheme in

different regions of the Salish Sea.

3.1 Ornstein-Uhlenbeck Velocity Model

3.1.1 Overview

The Ornstein-Uhlenbeck (O-U) process is a stochastic process and the continuous-time

analog of the discrete-time AR(1) stochastic process. The O-U process resolves the issue of

irregularly sampled data due to its continuous time formulation which accommodates any

observation times. It also has consistent parameters for different discretization scenarios
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and time steps [11]. This is important since the velocities of SRKWs drawn from sighting

records are not regularly observed in time. Therefore, we choose the O-U process to account

for the gross features seen in the irregular time series and then discretize the process into

the AR(1) model under controlled time steps to simulate the velocities of SRKWs.

Since we are modelling two-dimensional position (i.e. longitude or UTM easting, and

latitude or UTM northing), we also consider the velocities of SRKW in 2 dimensions with

the bivariate velocity vt = [vtx, vty]T . Anderson-Sprecher and Ledolter [2] and Johnson et

al. [17] suggested that treating bivariate velocity components independently of one another

is more realistic. For example, a positive correlation would mean SRKWs tend to have a

rotational motion. However, in reality there is little evidence for this and it is possible for

SRKWs to randomly switch directions between northeast and southwest, or indeed over

all directions. Therefore, we follow the advice of [17] and consider the parameters of the

bivariate velocity as independent in this study. This also means we can actually model

our system as 2 independent univariate processes. As a consequence, for the convenience

of explanation, we use the univariate velocity, vt = vtx or vty, to illustrate the following

theories and inferences.

General Form

The instantaneous velocity of a killer whale under the O-U process can be defined by the

following equation [36]:

dvt = α(µ − vt)dt + σdWt , (3.1)

where vt is the velocity at time t, α is a persistence parameter or the speed of mean reversion

associated with autocorrelation, µ is the mean velocity or a drift term, σ is the magnitude

of the stochasticity [11], and Wt represents the Wiener process with mean zero and the

property: Wt2 − Wt1 ∼ N(0, t2 − t1), 0 ≤ t1 < t2 [15, 17]. Note that α has units of time−1,

the dWt term has units of time1/2, and σ has units of distance × time−3/2 [11]. The α

parameter can be interpreted as the time-scale for reverting to the mean velocity, and the

σ parameter has no obvious biological interpretation [11].
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It is worth noting the analytic solution to the Equation (3.1), from [15], is

vt+δ = µ − e−αδ[µ − vt] + σ

∫ t+δ

t
eα(t−u)dW (u) , (3.2)

where δ is a small time interval. The analytic solution also implies vt+δ and vt are almost

independent if δ ≥ 3/α [17].

Inference such as maximum likelihood estimation (MLE) based on (3.1) and (3.2) is

applicable if observations are continuous and meet the asymptotic assumptions of MLE,

which will be explained later. In our data, the sighting records of SRKWs are discrete, and

time increments are too large, and the observations too sparse, to meet the asymptotic

assumptions of MLE. Therefore, we apply numerical approximation to estimate parameters

in the O-U process.

Euler Method

The Euler-Maruyama method (Euler Method) is the easiest and the most common numerical

approximation scheme to discretize the continuous time formulation of the O-U process.

Equation (3.1) can discretize (following [15]) as:

vt+∆t − vt = α(µ − vt)∆t + σ[Wt+∆t − Wt]

vt+∆t − vt = α(µ − vt)∆t + σ
√

∆tϵt , (3.3)

where ϵt ∼ N(0, 1), and ∆t can be any arbitrary time step. Often in practice µ = 0 is

assumed for the velocity model [17]. If this is the case then, Equation (3.3) will become:

vt+∆t = (1 − α∆t)vt + σ
√

∆tϵt. (3.4)

Note that this corresponds to the form of auto-regressive order one, or AR(1) process

vi+1 = ϕ∆tvi + ηi , (3.5)
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where ϕ∆t = (1 − α∆t) and ηi ∼ N(0, σ2∆t), and α and σ are two unknown parameters

that must be specified.

3.1.2 Parameter Estimaton

In general, we aim to estimate µ, α, and σ in the O-U process. If observations of velocity,

vt, are continuous and meet the asymptotic assumptions, the maximum likelihood estima-

tor (MLE) is commonly used. If observations are discrete, the pseudo-likelihood estimator

(PLE) is commonly used, and the results align with the least squares estimator (LSE).

These cases are each explained below.

Continuous Case

We define the time increment as δ and sample size as n. The MLE is asymptotic normal

and consistent under two asymptotic schemes. The first scheme is the large sample scheme

where δ is a fixed constant, and n → ∞. The second scheme is rapidly increasing design

scheme wherein δ decreases with n but the total observation time goes to infinity, namely:

δ → 0, n → ∞, nδ → ∞

and for some k ≥ 2, nδk → 0.

The likelihood function can be derived from the conditional density of Equation (3.1)

[15, 34]:

vt | vt−1 ∼ N(m, Λ)

m = vt−1e−αδ + µ(1 − e−αδ)

Λ = σ2(1 − e−2αδ)
2α

.

Let ϕ(x) be the probability density function of standard normal distribution. The likelihood

function of (µ, α, σ), from [34], is

L(µ, α, σ) = ϕ

(√
2α(v0 − µ)

σ

)
×

n∏
t=1

ϕ

(√
2α(1 − e−αδ)(vt − vt−1e−αδ − µ(1 − e−αδ))

σ

)
.
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By maximizing the likelihood function above using observations on vt, the MLE µ̂, α̂, and

σ̂ can be obtained.

Discrete Case

For the discrete case under the Euler method, the distribution of vt+∆t − vt in Equation

(3.3), from [15], is

vt+∆t − vt ∼ N(m, Λ)

m = α(µ − vt)∆t, Λ = σ2∆t .

When the time series is irregular, the pseudo-log-likelihood function is [15]

ℓ(µ, α, σ) = −1
2

n−1∑
i=1

[
(vi+1 − vi − α(µ − vi∆i))2

σ2∆i
+ log(2πσ2∆i)

]
,

where ∆i = ti+1 − ti, and ∆i’s can be different time intervals. Taking σ2 as constant,

maximizing the log-likelihood function is equal to minimizing the function

n−1∑
i=1

(vi+1 − vi − α(µ − vi∆i))2 .

As mentioned in Subsection 3.1.1, we most often assume µ = 0, and the function above

simplifies to
n−1∑
i=1

(vi+1 − vi + αvi∆i)2 . (3.6)

The consistent estimator of σ2 is

σ̂2 =
∑n−1

i=1 (vi+1 − vi)2∑n−1
i=1 ∆i

.

From the perspective of linear models, Equation (3.4) can be rewritten as

vt+∆t√
∆t

= vt√
∆t

− α
√

∆tvt + σϵt , (3.7)
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which aligns with the form of a linear model. The least-squares estimates (LSE) can be

obtained by minimizing the function:

n−1∑
i=1

[
vi+1√

∆i
− vi√

∆i
+ α

√
∆ivi

]2

, (3.8)

which is equivalent to minimizing Equation (3.6). In addition, we can also show the vari-

ance of α̂ calculated from the perspectives of PLE and LSE are the same. For the PLE,

the variance of α can be obtained by the Fisher information, the inverse of the negative

expectations of the second derivative of the log-likelihood function.

ℓ(α) = −1
2

n−1∑
i=1

[
(vi+1 − vi + αvi∆i)2

σ2∆i
+ log(2πσ2∆i)

]

V ar(α̂) =
(

− E

[
d2

dα2 ℓ(α)
])−1

= σ2∑n−1
i=1 ∆iv2

i

For LSE, the variance of α is straightforward.

vi+1 − vi√
∆i

= −α
√

∆ivi + ϵi

Let X =
[√

∆1v1, ...,
√

∆n−1vn−1
]T

Y =
[

v2 − v1√
∆1

, ...,
vn − vn−1√

∆n−1

]T

V ar(α̂) = V ar[(XT X)−1XY ] = σ2(XT X)−1

= σ2∑n−1
i=1 ∆iv2

i

The similarity is unsurprising because the discrete O-U process with no drift term corre-

sponds to the AR(1) process. Estimates from PLE and LSE are consistent for the AR(1)

process.

If ∆i’s are small enough, the pseudo-likelihood estimator is consistent and asymptotically

normal [15], the impact of the value of ∆i does exist, and large ∆i can make estimates biased

[15]. In our case, the time interval between any two observations in the same trajectory is

always less than 1 hour. Although there would be some bias existing for the Euler method,
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compromising its easiness to apply, we still choose to apply the Euler method to estimate

the parameters.

3.2 Direction-blending

3.2.1 Motivations

As noted earlier, the simulated trajectories generated by realizations of the velocities sim-

ulated purely from the standard O-U process are not very useful for SRKW forecasts. The

reason is that predicted trajectories often pass through regions that SRKWs rarely visit in

practice. To solve this issue, we propose a direction-blending method to alter the directions

of simulated velocities by making use of historical directional information to alter simulated

trajectories to be more like whale movement tracks.

3.2.2 Assumptions

Directional Memory

Figures 2.1 and 2.4 indicate that the movement of SRKWs has a certain level of persistence

in direction and a tendency to move along oceanic highways, or pathways, in certain regions

(e.g., in Haro Strait). We assume SRKWs do not significantly change their directions over a

period of time. We also assume in our simulation that the directional memory persists for 3

steps, or about 9 minutes. That is, we store the movement direction in the previous 9 minutes

as a directional memory, designated θℓ. A long-directional memory would make simulated

trajectories too persistent, whereas a short-directional memory makes simulated trajectories

too random. The directional memory will play a role in altering the direction of the current

velocity simulated from the O-U process, which will be explained later Section 3.2.4.

Historical Directional Samples

To appropriately alter the directions of SRKW velocities simulated from the O-U process, we

need to make use of observations of directional tendency from historical data as references.

We assume the movement directions of SRKWs are influenced by both the directional

memory and the location of the whale. During the simulation, we collect directional samples
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from the split trajectories of the Orca Master dataset given the current directional memory

and location.

At any given time in the simulation, we define the current location as (xi, yi) and the

directional memory as θℓi, where i is the current time step. There are N sighting locations

(xj , yj) corresponding to moving directions θj , j = 1, ..., N , that can be obtained from the

Orca Master dataset, We include θj ’s in the directional sample Θi with two conditions:

1. xi − 2.5 km ≤ xj ≤ xi + 2.5 km and yi − 2.5 km ≤ yj ≤ yi + 2.5 km

2. θℓi − π/2 ≤ θj ≤ θℓi + π/2.

The first condition means that we use a 5 km × 5 km square with its centroid at the

current location (xi, yi). This approach allows us to include other directional observations

nearby in the sample because it is unlikely to have directional observations precisely at

the current location. The second condition controls the permissible range of directions that

can be used. We assume SRKWs do not make sudden large-angle turns inconsistent with

their current direction of travel, and so only include historical directions whose difference

with the directional memory is no greater than π/2, or 90◦. It is worth noting that in the

simulation, the directional memory is allowed to change as time progresses because it only

traces back over the past 9 minutes.

After gathering the relevant historical directional samples, we can alter the directions

of the velocities simulated from the O-U process as follows. We assume the movement

direction given a location and directional memory will follow a Von Mises distribution

which is known as circular normal distribution. Then, we randomly draw a direction from

this distribution and use it as the next moving direction. However, historical directional

samples are sometimes not available at more remote locations due to a lack of observations.

Therefore, we modify the velocities by making use of the directional memory, which will be

further explained in Section 3.2.4.
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3.2.3 Von Mises Distribution

The ith bivariate velocity simulated from the O-U process can be written as

vi = vi

cos θi

sin θi

 , 0 ≤ θi < 2π, (3.9)

where vi is the speed, and θi is the angle. By changing θi, the velocity can be projected in

another direction under a Von Mises distribution, but maintain the same speed.

The probability density function of the Von Mises distribution given the current location

(xi, yi) and directional memory θℓi is

f(θm|xi, yi, θℓi) = 1
2πI0(κi)

eκi cos(θm−τi), (3.10)

I0(κi) = 1
2π

∫ 2π

0
eκi cos udu,

where τi is the mean direction, κi is the concentration, as the variance in a normal dis-

tribution, at the current location, I0(κi) is the modified Bessel function of order 0, and

0 ≤ θm < 2π. With the sample of historical directions Θi, we can estimate µi and κi by

MLE. The MLE of those two parameters can be found in [16], and R provides the function,

‘mle.vonmises’ in the circular package [1]. By generating a random number from the von

Mises distribution, we can then project the direction θi of the velocity simulated from the

O-U process in θm, a moving direction more likely to happen based on historical information.

3.2.4 Blending Principles

The ideal situation is that we can project all velocities in realistic directions using the von

Mises distribution conditioned on different locations and previous directional movements.

However, the sighting data of SRKW are often too sparse to cover all locations within the

Salish Sea due in part to lack of observer effort, and also in part due to low probability

of SRKW occurrence. Therefore, there are no historical directional observations at some

locations. Even though there are no directional observations, we still, however, want to

maintain directional consistency. Therefore, we consider projecting the moving direction
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as the average between the directional memory and the direction simulated from the O-U

process. In this way, the difference between the current direction and the directional memory

is still no greater than π/2. Specifically, we define the blended direction for these two cases

as

θ′
i =


θm ∼ von Mises(τi, κi | xi, yi, θℓi) if historical directional observations are available

(θℓi + θi)/2 otherwise

(3.11)

After projection, the velocity becomes:

v′
i = vi

cos θ′
i

sin θ′
i

 , 0 ≤ θ′
i < 2π, (3.12)

where vi is the same speed in Equation (3.9). Equation (3.12) then replaces (3.9), and

stochastic simulation can continue following the O-U process.

3.3 Coastal Avoidance Algorithm

When simulating animal trajectories, the simulated trajectories must stay within a valid area

of interest. For birds or some terrestrial animals, the geometry of boundaries is usually simple

such as a polygon, or a bounding box delineating a habitat type. For marine mammals, areas

of interest must fall within the ocean, and the shapes of coastal boundaries may be highly

irregular. In our case, the geometry of the Salish Sea is complex, with numerous large and

small islands distributed throughout as depicted in Figure 1.1. During the simulation of

SRKW trajectories, the algorithm must be adapted to prevent simulated whale trajectories

from crossing land, or entering shallow water. We do this by further adjusting the movement

direction in Equation (3.12) if the current simulated velocity from the O-U velocity process

and direction-blending pushes the trajectory onto land or shallow water (< 2 m deep).

We consider a simple algorithm to maintain trajectories to be in water and to avoid

coastlines. The idea behind the approach is to find the direction aligning best with the

current directional memory, but making the trajectory stay in water. In the simulation,
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we make use of the following quantities: the current location xi = (xi, yi), the velocity

vi = (vxi, vyi) from the O-U process and the blending method, the directional memory

θℓi, the time step ∆t, and the next predicted destination xi+1 = (xi+1, yi+1) derived from

xi + vi∆t. When there is land or shallow water obstructing the route from xi to xi+1, the

algorithm helps to directly adjust the next destination and force the whale trajectory to

remain in water while keeping the moving direction consistent with the directional memory

as much as possible. Finally, the entire route is constrained to waters > 2 metres deep.

The procedures underlying the algorithm are shown in Figure 3.1. As shown in Figure

3.1a, there is a direction memory (black arrow) associated with the current location in the

simulation. The current moving direction (red arrow) pushes the next destination onto land.

We then adjust the next destination in three steps:

1. We use the distance between the current location and the original next destination

as the radius r (the red arrow in Figure 3.1a) to generate 40 candidates Z, covering

different angles.

Z = z1, ..., zk

zk = xi + r

cos θk

sin θk


θk = π

20k, k = 1, ..., 40

There should be no land or shallow water (less than 2 m depth) between the current

location and candidates. For some angles, the radius allows some candidates to occur

on land, and thus, we put those candidates along with the same angles back in the

water but adjacent to the coastline. The candidates are shown in Figure 3.1b.

2. Among the 40 candidates, we take the median of their distances between the current

location xi as a threshold. Then, we discard the candidates whose distances from

the current location are under the threshold. The 20 filtered candidates {zk
′, θ′

k} are

shown in Figure 3.1c.
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3. Of the remaining filtered candidates, we pick the one whose moving direction is closest

to the directional memory as the next destination.

max

{
cos
(
|θ′

k − θℓi|
)}

By following the steps of the algorithm above, we not only avoid pushing trajectories

onto land or shallow water but also ensure trajectories are close to the distance to the

original destination, thereby reducing the chance of trapping trajectories by the coastline.
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(a) The moving direction to the next
destination (red arrow) and current directional

memory (black arrow)

(b) Candidate destinations Z

(c) Candidate destinations with enough
displacement

(d) Final destination

Figure 3.1: Steps in the coastal avoidance algorithm
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3.4 Simulation Procedures

The goal of the simulation is to forecast possible travelling areas of SRKW pods given

that a pod or pod leader is observed at a specific location. Given an initial condition

(position and velocity), we simulate 1000 whale pods, make them travel by following the O-

U velocity process with direction-blending and using the coastal avoidance algorithm, and

finally draw simulated trajectories. Each simulated trajectory is a realization, representing a

possible scenario under the initial condition and the proposed models. Using many simulated

trajectories, we build all possible travelling areas under all scenarios, which is also termed

an ensemble. Using these ensembles of realizations, we can build probability forecasts of

possible travelling areas based on the simulated trajectories.

The procedures for simulating SRKW trajectories can be summarized as follows.

1. Simulate an SRKW pod trajectory starting from generating a whale pod with initial

conditions, including initial location x0 = (x0, y0), initial velocity v0 = (v0x, v0y).

2. The velocity of the simulated pod follows the O-U velocity process under Euler nu-

merical approximation in Equation (3.4), which is an AR(1) process. We model the

SRKW pod velocity forward in time by generating vi, the ith velocity of the whale

pod, with a constant time step ∆t = 0.05 hours (3 minutes) from the following 2-D

AR(1) process.

vix = (1 − α̂∆t)vi−1x + zix

viy = (1 − α̂∆t)vi−1y + ziy

zix, ziy ∼ N(0, σ̂2∆t)

3. The pod velocity simulated from the O-U process (the AR(1) process) would steer the

trajectory to locations where SRKW rarely transit. Therefore, we modify vi by the

direction-blending method as Equation (3.11) and (3.12) to steer the simulated pod

to locations aligning with historical observations.
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4. The pod trajectory drawn from simulated trajectories must stay in water (and not

intersect land). Therefore, when any piece of the simulated pod trajectory is steered

toward coastlines, the simulated velocity from the O-U process with direction-blending

should be adjusted by the coastal avoidance algorithm in Section 3.3. In the simulation,

when the route from xi to the destination xi+1 passes land or shallow water, we again

modify vi using the direction selected by the coastal avoidance algorithm.

5. Repeat Steps 2-4 until reaching the end of the desired simulation period. The simulated

pod location xi along with the trajectory can be drawn by

xi = x0 +
i−1∑
j=1

vj∆t

This algorithm will be applied in the following chapter for SRKW trajectory forecasting.
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Chapter 4

Results

In this chapter, we will present the outcomes of implementing the methods introduced in

Chapter 3. Initially, we carry out parameter estimation for the O-U velocity process dis-

cretized via the Euler approximation. Subsequently, we will demonstrate how the direction-

blending method is able to simulate realistic trajectories that conform to probable pathways.

Finally, we will show the results of forecasting experiments simulating three trajectories us-

ing specified initial conditions and observed pathways.

4.1 Parameter Estimation

We used the split trajectories obtained from the Orca Master dataset using the approach

described in Subsection 3.1.2 to estimate α and σ in Equation (3.4). Using the estimate α̂,

obtained from Equation (3.5) the parameters ϕ and η of the O-U process can be obtained.

The estimate of the persistence parameter ϕ was calculated as ϕ̂∆t = 1 − α̂∆t, and the

estimate of the standard deviation of η is σ̂
√

∆t.

The numerical values for these parameters are shown in Table 4.1. The estimated speed

of mean reversion, α̂, is 2.48 units/h, and the estimated magnitude of the stochasticity

or variability, σ̂, is 26.77 km/h3/2. Based on these results, the estimates of persistence

parameter, ϕ̂, and standard deviation, η̂, obtained from α̂ and used in Equation 3.5 to

simulate the trajectories of SRKWs with a time step 0.05 h, are 0.876 and 6 km/h. The

high auto-correlation coefficient implies the velocities of SRKWs are persistent over a 3-min

time step, and the persistence decreases as the size of time steps increases. If a chosen time

step is larger than 24 min (0.4 h), ϕ will decay to nil, which means two velocities with an
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interval greater than 24 min can be considered independent. Because the sample size, or

the number of available split trajectories is large (1266), the standard error (SE) of α̂ is

quite small, and thus, the 95% confidence interval (CI) is narrow. The standard deviation

of the velocity for the time step of 0.05 h appears quite realistic and shows SRKWs do not

accelerate or slow down too much within 3 minutes.

Table 4.1: Estimation of the parameters in Equation (3.3) and (3.5)

α ϕ0.05 σ σ0.05
Estimate 2.48 0.876 26.77 6.00

SE 0.072 0.004 - -

Upper 95% CI 2.62 0.883 - -

Lower 95% CI 2.34 0.869 - -

4.2 Direction-blending

To illustrate the influence of direction-blending on the simulation of SRKW movement,

we simulated ten trajectories (realizations) using the same initial location and with the

same initial velocity (10 km/h north) for 4 hours with and without direction blending. Fig-

ure 4.1 shows the simulation results of the ten trajectories for each case. The dark green

dots and coloured lines in both plots indicate the initial location and simulated trajecto-

ries, respectively. The trajectories simulated purely from the O-U velocity model without

direction-blending turned radiated the initial location, reversed direction relative to the

initial velocity, and hence did not explore the relevant spatial region in a realistic manner.

In contrast, the trajectories simulated from the O-U velocity model and adjusted by the

direction-blending were smooth, expanded to cover relevant regions in the Salish Sea, and

maintained a degree of consistency; all in all they are more like the movement of SRKW in

Figure 2.4.

As mentioned in Section 3.2, velocities generated from the raw O-U velocity model

cannot guide trajectories to specific locations and along specific pathways. By direction-

blending, we maintained consistency and adjusted the angles of the velocities in more re-
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(a) Trajectories simulated without
direction-blending

(b) Trajectories simulated with
direction-blending

Figure 4.1: Comparison of 10 trajectories with the same initial conditions. The left panel
makes use of a correlated random walk movement model without direction blending, while
the right panel includes direction-blending in the movement model. The right panel demon-
strates how the direction-blending method is able to simulate realistic trajectories that
conform to historic trajectories 2.4.

alistic directions based on historical records. The SRKW forecasts in the simulation then

can explore the regions where SRKW were present, aligning with Figure 2.2. In addition,

even though we maintained a degree of consistency in direction-blending, it still allowed

simulated whale pods to travel back or make a large-angle turn, as SRKWs are observed to

do in the Salish Sea [40]. Following Section 3.2, we only used the moving direction within 9

min as a directional memory to collect historical directional information to form a sample

of possible directions, and thus SRKW trajectories did not maintain the same directional

memory from the initial location to the end of the simulation. This allows simulated SRKW

to travel in directions opposite to the directions at the beginning of the trajectory, but

the change comes about in a slow and smooth way. Overall, adjusting moving directions

by historical records provides a bridge between velocities simulated by stochastic processes

and realistic trajectories.
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4.3 Trajectory Forecasting

Following the approach described in Section 3.4, we aimed to forecast the movement of

SRKWs by simulating the trajectories of SRKWs with only the information on initial con-

ditions. We selected three historical observed trajectories to validate our simulation and

forecast methods. These trajectories are independent of the trajectories we used to build

our model. As shown in Figure 4.2, the dark green dots in all plots are the initial locations.

We also calculated the initial velocity from the data as the distance between the initial and

the second observed locations divided by the time interval. In Figure 4.2a, the first trajec-

tory was observed in July 2012, starting around Vancouver Island, moving north to Stuart

Island, and entering Boundary Pass. In Figure 4.2b, the second trajectory was observed

in August 2016, starting around Stuart Island and moving south around San Juan Island.

The last trajectory in Figure 4.2c was a reverse trajectory observed in July 2012, starting

around the north of Pender Island, moving south first, and finally turning north to Active

Pass.

Figures 4.3-4.5 show the forecasted locations for the SRKW for various time horizons

for the three test cases. These are expressed as the envelope of 90% probabilities, generated

from the kernel-density estimated forecast probability density functions using the ensemble

of forecast trajectories.

In Figure 4.3 our forecasts missed the observation at 0.47 h, captured observations from

0.95 h to 2.85 h, and missed again at 3.6 h. The plausible forecast region increased as

the forecast time increased. Beyond 2.85 h, the forecast regions already covered a large

portion of the Salish Sea. In the first 1.97 h, the entire forecast regions moved along with

the observations. However, at 1.97 h, the forecast showed a trend of the second peak that

SRKWs might transit to the south instead of sticking around Stuart Island. At 2.85 h

and 3.6 h, there were two obvious peaks in the probability density, one was around Active

Pass, and the other was around San Juan Island. These forecast results implied direction-

blending worked in the model to allow SRKWs to reverse in the opposite direction based on

historical observations. However, the forecasts showed a higher chance that SRKWs would

transit through Active Pass, and SRKWs finally transited through Boundary Pass. In reality,
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(a) Trajectory from Haro Strait to Boundary
Pass in July 2012. Note the trajectory does a

back step in Boundary Pass.

(b) Trajectory through Haro Strait in August
2016. Note the trajectory does a back step

mid-sequence.

(c) Trajectory through Active Pass in July 2012.

Figure 4.2: Three historical data trajectories used to evaluate forecasting performance.

Stuart Island is an important turning point where SRKWs reaching from the south choose

to transit to either Active Pass or Boundary Pass. That difference between the forecasts

and observations may imply there were more observations transiting from Stuart Island to

Active Pass than Boundary Pass. It also implies forecasts starting from the south can only
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follow long-term directional probabilities around the turning point to select Active Pass or

Boundary Pass as the final destination.

The forecast results of the second trajectory in 2016 around San Juan Island are shown

in Figure 4.4. Compared to the forecasts of the trajectory in 2012, the forecast regions

covered the observations well from the beginning to 4.35 h. The forecast regions were also

growing as forecast time increased. After 2.85 h, the forecast regions were stable. There were

also two peaks in the probability density showing up after 2.85 h. One was around Active

Pass, and the other was around San Juan Island. It is worth noting that the forecast regions

for the two target trajectories both had similar ranges and two peaks around Active Pass

and San Juan Island after 2.85 h. However, they displayed varying probability densities for

the peaks. Similar forecast ranges imply that our forecasts consider most possible directions

that SRKWs can transit through, ending up covering a large portion of the Salish Sea.
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Figure 4.3: The results of a forecasting experiment showing probability forecasts in Haro
Strait and Boundary Pass. Units of time are discretized to align with Orca Master whale
observations. 34



Figure 4.4: The results of a forecasting experiment showing probability forecasts in Haro
Strait and Active Pass. Units of time are discretized to align with Orca Master whale
observations. 35



Figure 4.5 shows the forecast regions of the reverse trajectory around Active Pass in

2012. The initial velocity at the initial location was south, and the forecast region covered

the observation well and was small at 0.4 h. At 1.07 h, the forecast started spreading

out, considering a strong tendency to continue to transit south and possibility to reverse

northward to Active Pass. The observation at 1.07 h indeed reversed in the opposite direction

to the north and kept heading to Active Pass in the next few hours. The forecast regions still

covered the observations even though the moving directions were totally different from the

initial velocity. Therefore, although our forecast regions were large after the forecast time

reached 3 h, those simulated whale pods in the simulation explored most possible scenarios

of the movement of SRKWs, including the possibility of reversing.

Boxplots in Figure 4.6 show the distribution of direct position errors (in km) for the

three historical trajectories in Figure 4.3, 4.4 and 4.5. Direct position error is defined as the

distances between simulated whale locations and observations matched to the observation

time. The direct position errors generally grew as forecast time increased, and trajectories

diverged from those observed. The median direct position errors generally remained under

20 km for forecasts out to 3 hours. The ranges of direct position errors were also generally

stable after the forecast time reached 3 hours. This aligns with the results we mentioned

before, wherein forecast envelopes were generally stable (and large) after 3 hours. Combining

the median direct position errors with forecast ranges, our forecasts can be said to work up

to 3 hours for different initial conditions in the Salish Sea.
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Figure 4.5: The results of a forecasting experiment showing probability forecasts through
Active Pass and Haro Strait. Units of time are discretized based on Orca Master whale
observations. Probability forecast around Active Pass
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(a) Trajectory from Haro Strait to Boundary
Pass in July 2012

(b) Trajectory through Haro Strait in August
2016.

(c) Trajectory through Active Pass in July 2012

Figure 4.6: Boxplots showing the distribution of direct position error of the forecasts of the
three chosen trajectories
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Chapter 5

Discussion

In this study, we developed a forecasting framework for the movement of SRKWs for the

purpose of providing early warning alerts to mitigate collisions with commercial vessels and

reduce noise exposure. To do this we modified a basic animal movement model in the form

of a continuous-time velocity-based Orstein-Uhlenbeck (O-U) process. Our central modi-

fication was to incorporate historical pathway information into the stochastic simulation,

thereby making SRKW trajectories more realistic and improving forecast skills. The dataset

we used to do this was comprised of archived sighting data from the Orca Master dataset

that was analyzed and processed to yield reasonable and realistic historical whale trajec-

tories. A direction blending algorithm provided the means to incorporate these historical

movement directions into the O-U velocity process. A coastline avoidance algorithm was

also included. The result is an SRKW movement model that, given initial position and

velocity, is able to successfully simulate SRKW trajectories.

Both Johnson et al. [17] and Gurarie et al. [11] suggested that using continuous-time

models to model animal movement is wiser than using discrete-time models because it better

matches irregularly sampled data, and most importantly aligns with actual animal move-

ment which is a continuous process. We support this viewpoint, especially when dealing

with irregularly sampled data. Given that the sighting records of SRKWs are discrete and

opportunistically sampled, the continuous time model allowed us to directly fit our raw ve-

locity observations to the model without further processing. The time-invariant parameters

also allowed us to model the velocities and trajectories of SRKWs at any chosen time scale.
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Therefore, continuous-time models are able to utilize the full information of data and have

more flexibility compared to discrete-time models.

In continuous-time models, We chose the independent two-dimensional O-U velocity

process to explore the statistical regularity hidden behind the irregular sighting data. By

transforming the O-U velocity process into the AR(1) process through discretization, the

results showed the velocity of SRKWs is highly persistent (ϕ̂ = 0.876) within a single time

step of 3 minutes, also implying that system memory is erased in about 24 minutes. The

standard deviation of the velocity within a single time step of 3 minutes is 6 km/h, which is

much larger than the 1 km/h that Randon et al. [32] assumed in their study for the SRKW.

Therefore, properly estimating the parameters by the data across the area of interest is

important.

We then simulated the velocities of a pod of SRKWs, or a pod leader, from the O-U

velocity process. However, our results showed trajectories determined from the simulated ve-

locities from the O-U velocity process were not close to realistic SRKW movement patterns.

The realizations had far too much directional spread. Therefore, we proposed the direction-

blending method to project the velocities in more probable directions based on the assumed

directional memory of 9 minutes (3 time steps) and historical directional information. This

approach chose the direction by generating a random number from a von Mises distribution

as dictated by the current directional memory and historical directional information, or the

average of directional memory and the direction of the velocity simulated from the O-U

process if the historical directional sample is unavailable.

We suggest that considering directional persistence and preference in trajectory simu-

lation is important for animal movement modelling, especially for the velocity-based O-U

process. When modelling the two-dimensional O-U velocity process, assuming independence

between two coordinates is natural so that unwanted rotational movement can be prevented.

In addition, potential functions that govern preferable destinations are not easy to be used

with the O-U velocity process. These settings and limitations do not take into account di-

rectional persistence and preference of animal movement and thus, we recommend animal

movement models should be adjusted by using this directional information. There have
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been a few studies focusing on applying directional persistence and circular distributions

to animal movement such as Duchesne et al. [7], Nicosia et al. [24], and Mastrantonio [20].

Nevertheless, most animal movement studies applying the O-U velocity process did not

consider directional preference (Gurarie et al. [12], Johnson et al. [17], Mcclintock et al.

[21]). Velocities simulated from pure continuous-time correlated random-walk models may

steer trajectories to places that animals rarely visit. Therefore, adjusting the velocities to-

ward preferable positions such as our approach, provides a variable alternative to potential

functions.

Three historical trajectories were chosen to illustrate our simulation and forecast frame-

work. Clearly, this is not enough to definitely validate our movement model, but serves

to hint at its efficacy. From the simulated trajectories, we generated probability density

functions, covering 90% probability of being within a region, as estimated by kernel density

to indicate regions where SRKW may be found in the next few hours. For all three cases,

our forecast regions covered the observations well. Although the forecast regions enlarged

as the forecast time increased and ended up reaching stable long-term average patterns,

the possibility of SRKWs reversing was considered, and the median direct position errors

were generally under 20 km in the first 3 hours. Overall, our forecasts are valid to provide

the ranges of SRKWs transiting up to 3 hours and thus, able to improve upon currently

implemented conservation measures for vessel-whale interaction.

Joy et al. (2019) indicated that commercial vessels transiting with a speed under 11 knots

could significantly reduce lost foraging time for SRKWs [18]. Leaper (2019) also indicated

slower vessel speeds are beneficial to reduce collision risk with whales [19]. Transport Canada

has implemented two speed restricted zones (SRZs) in the Salish Sea near Swiftsure Bank

and 2 interim sanctuary zones (ISZs) between Pender Island and Saturna Island in effect

from June to November to protect killer whales. All vessels are required to stay under

a speed of 10 knots in the speed restricted zones, and no vessels are allowed to enter the

interim sanctuary zones except local groups with an exemption. In addition, all vessels must

keep a distance of at least 400 meters and 300 yards within the border of Canada and the

USA, respectively, from all killer whales in the Salish Sea. Our movement model can also

41



incorporate recorded vessel tracks to simulate and assess the cumulative sound exposure

level (cSEL) for SRKWs. In fact, we are now assisting Transport Canada in assessing the

necessity of extending the ISZ around Saturna Island to Tumbo Channel by calculating the

cSEL that SRKWs would receive when they transit through Tumbo Channel, which relies

on the simulated trajectories of SRKWs from our model.

The SRZs and the ISZs are only a small portion of the Salish Sea. However, almost

the whole Salish Sea is federally designated as ‘critical habitat’ of SRKWs in both Canada

[8] and the USA [28]. If speed-restricted measures could be implemented across the Salish

Sea, the impact of noise for SRKWs would be substantially reduced. However, the speed-

restricted measures in place across the Salish Sea also significantly influence economic ac-

tivities. To reach a balance between conservation objectives and economic cost, a dynamic

structure can be developed to implement speed-restricted measures based on our forecast

scheme. Given an initial condition, we can keep forecasting and updating probable areas

where SRKWs would transit and advise commercial vessels in the forecast areas to slow their

speeds. The procedures could be adjusted dynamically. For example, once a citizen scientist

or a hydrophone detects SRKWs in the Salish Sea, we can send a slow-down warning to

commercial vessels that overlap with the whale movement forecast region of the first few

hours. Then, we can update the forecast region and the slow-down warning to the vessels in

the following hours using the initial conditions of the most recent sighing, or if new obser-

vations become available, the forecast region can be updated in real-time. There should be

a variety of strategies to utilize the forecast information. In addition, because our forecast

regions include most areas that SRKWs may transit, our forecast regions may be seen as

the largest region where commercial vessels should decrease their speeds. If speed-restricted

orders are assigned temporarily, instead of all the time, any potential economic loss from

slowing the vessel will also be mitigated.

Currently, our forecasts solely rely on initial whale location and velocity. In fact, SRKWs

are highly likely to be tracked continuously because of the large amount of observation effort

invested by citizen scientists and research groups in the Salish Sea. Therefore, it is worth

introducing data assimilation, such as in Randon et al. [32] as the forecasting framework.
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Our improved SRKW movement model can be directly incorporated within that framework

and will improve predictive skills. We are also interested in exploring how to adjust the

estimates in the O-U process and update direction-blending information once new observa-

tions emerge. Our direction-blending scheme would provide useful directional information

to improve the process of data assimilation for more accurate forecasts. In addition, ex-

ploring the relationship between the movement of SRKWs and the behavioural state of

SRKWs and how it links to environmental or physical factors such as tidal state, currents,

sea temperature, and salinity, may also help improve the forecasting framework and con-

tribute information that would narrow down the forecast region. In addition, our approach

is transferable to different animals and different data sources such as satellites, hydrophones,

and other telemetry data. As long as we have initial location and velocity and historical

velocity data, we can forecast the trajectories of a specific animal. We anticipate making

our forecasting framework more comprehensive under different scenarios and applications

in the real world.
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