Using Mathematics to Solve Real World Problems

Creating a mathematical model:

Creating a mathematical model:

- We are given a word problem

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables
- Use these equations to find the values of these variables

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables
- Use these equations to find the values of these variables
- State the answer to the problem

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables
- Use these equations to find the values of these variables
- State the answer to the problem

Today we will do this using straight lines as our equations, and we will solve the problem by drawing these lines (graphing).

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables
- Use these equations to find the values of these variables
- State the answer to the problem

Today we will do this using straight lines as our equations, and we will solve the problem by drawing these lines (graphing).

This process is called "Linear Programming" and is one of the most powerful mathematical methods used by businesses and companies to solve problems and help them make the best decisions.

Creating a mathematical model:

- We are given a word problem
- Determine what question we are to answer
- Assign variables to quantities in the problem so that you can answer the question using these variables
- Derive mathematical equations containing these variables
- Use these equations to find the values of these variables
- State the answer to the problem

Today we will do this using straight lines as our equations, and we will solve the problem by drawing these lines (graphing).

This process is called "Linear Programming" and is one of the most powerful mathematical methods used by businesses and companies to solve problems and help them make the best decisions.
"Operations Research" is the profession that applies mathematical methods like this to problems arising in industry, healthcare, finance, etc.

A problem:

A problem:

A furniture manufacturer produces two sizes of boxes (large, small) that are used to make either a table or a chair.

A problem:

A furniture manufacturer produces two sizes of boxes (large, small) that are used to make either a table or a chair.

A problem:

A furniture manufacturer produces two sizes of boxes (large, small) that are used to make either a table or a chair.

A table makes $\$ 3$ profit and a chair makes $\$ 5$ profit.

A problem:

A furniture manufacturer produces two sizes of boxes (large, small) that are used to make either a table or a chair.

A table makes $\$ 3$ profit and a chair makes $\$ 5$ profit.
If M small blocks and N large blocks are produced, how many tables and chairs should the manufacturer make in order to obtain the greatest profit?

Large block

Small block

Table
1 large block
1 small block

Chair
1 large block
2 small blocks

Problem: Given \mathbf{M} small blocks and \mathbf{N} large blocks, how many tables and chairs should we make to obtain the most profit?

Profit: \$3 \$5

Table
Chair

Example: 12 small blocks

and 12 large blocks

Example: 12 small blocks

and 12 large blocks

We can make 4 tables and 4 chairs:

Example: 12 small blocks

and 12 large blocks

We can make 4 tables and 4 chairs:

4 large
4 small

8 large
12 small

Example: 12 small blocks

and 12 large blocks

We can make 4 tables and 4 chairs:

$$
\text { Profit }=(\$ 3) \times 4+(\$ 5) \times 4=\$ 32
$$

12 small blocks

12 large blocks

4 tables and 4 chairs:

\$3

\$5

Used:
8 large blocks 12 small blocks
(4 large blocks left)

12 small blocks

12 large blocks

4 tables and 4 chairs:

I can make 2 more tables if I make 1 less chair; 3 chairs and 6 tables \rightarrow increase my profit! (1 chair $\rightarrow 2$ tables, profit goes up by $\$ 1$)

$$
\text { Profit }=(\$ 3) \times 6+(\$ 5) \times 3=\$ 33
$$

12 small blocks

12 large blocks

6 tables and 3 chairs:

\$3
\$5

Used:
9 large blocks 12 small blocks
(3 large blocks left)

12 small blocks

12 large blocks

6 tables and 3 chairs:

> Used:
> 9 large blocks 12 small blocks (3 large blocks left)

I can do it again; change one chair into 2 tables; $\mathbf{8}$ tables and $\mathbf{2}$ chairs

$$
\text { Profit }=(\$ 3) \times 8+(\$ 5) \times 2=\$ 34
$$

12 small blocks

12 large blocks

8 tables and 2 chairs:

\$3

Used:
10 large blocks 12 small blocks
(2 large blocks left)

12 small blocks

12 large blocks
12

8 tables and 2 chairs:

I can do it again; change one chair into 2 tables; 10 tables and 1 chair

$$
\text { Profit }=(\$ 3) \times 10+(\$ 5) \times 1=\$ 35
$$

12 small blocks

12 large blocks

10 tables and 1 chair:

\$3

\$5

Used:
11 large blocks 12 small blocks
(1 large block left)

12 small blocks

12 large blocks
12

10 tables and 1 chair:

> Used:
> 11 large blocks 12 small blocks (1 large block left)

I can do it again; change one chair into 2 tables; $\mathbf{1 2}$ tables and $\mathbf{0}$ chairs

$$
\text { Profit }=(\$ 3) \times 12+(\$ 5) \times 0=\$ 36
$$

12 small blocks

12 large blocks

12 tables and 0 chairs:

Profit $=\$ 36$

Used:
12 large blocks 12 small blocks
(no blocks left)

Is this the best?

Now you try:

20 small blocks

2012 large blocks

How many tables and chairs?

Another:

25 small blocks

2012 large blocks

How many tables and chairs?

table

$$
\begin{aligned}
& \text { small }=12 \\
& \text { large }=12
\end{aligned}
$$

tables	0	2	3	4	6	8	10	11	12
chairs	6	5	4	4	3	2	1	0	0
profit	30	31	29	32	33	34	35	33	36

tables	2	4	5	6	7	8	10	11	12
chairs	9	8	7	6	5	4	2	1	0
profit	51	52	50	48	46	44	40	38	36

$$
\text { small = } 20
$$

large $=12$

```
small = 25
large = 12
```

tables	0	4	5	6	7	8	10	11	12
chairs	12	8	7	6	5	4	2	1	0
profit	60	52	50	48	46	44	40	38	36

Not many small blocks

Many small blocks

Summary

Table

Chair

Two cases:

M = \# small blocks

N = \# large blocks

Table

Chair

Two cases:

1. Many small blocks: $\quad \mathrm{M}>=\mathbf{2 N}$

M = \# small blocks

N = \# large blocks

Table

Chair

Two cases:

1. Many small blocks: $\quad \mathrm{M}>=\mathbf{2 N}$
\rightarrow make N chairs, 0 tables

M = \# small blocks

Two cases:

1. Many small blocks: $\quad \mathbf{M}>=\mathbf{2 N}$
\rightarrow make N chairs, 0 tables
2. Not many small blocks: $\mathbf{M}<\mathbf{2 N}$

M = \# small blocks

N = \# large blocks

Table

Chair

Two cases:

1. Many small blocks: $\quad \mathbf{M}>=\mathbf{2 N}$
\rightarrow make N chairs, 0 tables
2. Not many small blocks: $\mathbf{M}<\mathbf{2 N}$
\rightarrow mixture of tables and chairs

M = \# small blocks

N = \# large blocks

Table

Chair

Two cases:

M = \# small

1. Many small blocks: $\quad \mathrm{M}>=\mathbf{2 N}$
\rightarrow make N chairs, 0 tables
2. Not many small blocks: $\mathbf{M}<\mathbf{2 N}$

N = \# large blocks

```N
```


\rightarrow mixture of tables and chairs
What is the magic number of tables and chairs??

Two cases:

1. Many small blocks: $\quad M>=2 N$
\rightarrow make N chairs, 0 tables
2. Not many small blocks: $\mathbf{M}<\mathbf{2 N}$

N = \# large blocks

Table
\rightarrow mixture of tables and chairs
What is the magic number of tables and chairs??

Let's make a mathematical model to find out

Table

Chair

$X=\#$ tables built
 Our variables

 Y = \# chairs builtM = \# small blocks

Table

Chair

X $=$ \# tables built
$\mathbf{Y}=$ \# chairs built
How many can I build?

M = \# small blocks

N = \# large blocks

Table

Chair

X = \# tables built
Y = \# chairs built

How many can I build?

$X+2 Y<=M$; I have only M small blocks

$\mathrm{X}+\mathrm{Y}$ <= N ; I have only N large blocks

M = \# small blocks

N = \# large blocks

Table

Chair

Our equations
$\mathrm{X}=$ \# tables built
Y = \# chairs built

How many can I build?
$X+2 Y<=M$; I have only M small blocks
$\mathrm{X}+\mathrm{Y}$ <= N ; I have only N large blocks

M = \# small blocks

N = \# large blocks

Table

Chair

Our equations
(Note: these are inequalities, not equalities!)

X = \# tables built
Y = \# chairs built
How many can I build?

$X+2 Y<=M$; I have only M small blocks

$X+Y<=\mathbf{N}$; I have only N large blocks

M = \# small blocks

N = \# large blocks

Table Chair

Let's plot all possible choices for X and Y for a given M and N, and then we'll pick the X, Y that gives the greatest profit.

X = \# tables built
Y = \# chairs built
How many can I build?
$X+2 Y<=M$; I have only M small blocks
$X+Y<=\mathbf{N}$; I have only N large blocks

M = \# small blocks

N = \# large blocks

Table

Chair

Let's plot all possible choices for X and Y for a given M and N, and then we'll pick the X, Y that gives the greatest profit.

Solving our equations . . .

Intermission: A prìmer on lìnear equations

Intermission: A prìmer on linear equations

A linear equation: $\quad \underline{a X+b Y=c}, \quad$ or $\quad \underline{Y}=m X+b, \quad a, b, c, m$ numbers, X, Y variables

Intermission: A prìmer on linear equations

A linear equation: $\quad \underline{a X+c} \mathbf{Y}=\mathrm{d}, \quad$ or $\quad \underline{Y=m X+b}, \quad a, b, c, d, m$ numbers, X, Y variables

If we plot all the X, Y that satisfy a linear equation, it forms a line:

Intermission: A primer on linear equations

A linear equation: $\quad \underline{a X+c} \mathbf{Y}=\mathrm{d}, \quad$ or $\quad \underline{Y=m X+b}, \quad a, b, c, d, m$ numbers, X, Y variables

If we plot all the X, Y that satisfy a linear equation, it forms a line:

Intermission: A prìmer on linear equations

A linear equation: $\quad \underline{a X+c} \mathbf{Y}=\mathrm{d}, \quad$ or $\quad \underline{Y=m X+b}, \quad a, b, c, d, m$ numbers, X, Y variables

If we plot all the X, Y that satisfy a linear equation, it forms a line:

Back to our problem ...

Let's say $\mathrm{M}=12, \mathrm{~N}=12$

$$
\begin{array}{llll}
X+2 Y<=12 & \rightarrow & Y=-(1 / 2) X+6 & \text { slope }=-1 / 2 \\
X+Y<=12 & \rightarrow & Y=-(1) X+12 & \text { slope }=-1
\end{array}
$$

```
X = # tables
Y = # chairs
M = # small blocks
N = # large blocks
```

Let's say $M=12, N=12$

$$
\begin{array}{llll}
X+2 Y<=12 & \rightarrow & Y=-(1 / 2) X+6 & \text { slope }=-1 / 2 \\
X+Y<=12 & \rightarrow & Y=-(1) X+12 & \text { slope }=-1
\end{array}
$$

We want to find all possible X and Y that satisfy these two equations.

Let's say $M=12, N=12$

```
X = # tables
Y = # chairs
```

$X+2 Y<=12 \rightarrow Y=-(1 / 2) X+6 \quad$ slope $=-1 / 2$
$X+Y<=12 \rightarrow Y=-(1) X+12 \quad$ slope $=-1$
We want to find all possible X and Y that satisfy these two equations.
First draw the equality lines;

Now the inequalities:
$X+Y<=12 \quad$ which side of the line is this region?

Now the inequalities:
$X+Y<=12 \quad$ which side of the line is this region?
Let's check one point: Is $(0,0)$ in this region?

Now the inequalities:
$X+Y<=12 \quad$ which side of the line is this region?
Let's check one point: Is $(0,0)$ in this region?
Yes: When $X=0$ and $Y=0$ then $0+0<=12$

Now the inequalities:
$X+Y<=12 \quad$ which side of the line is this region?
Let's check one point: Is $(0,0)$ in this region?
Yes: When $X=0$ and $Y=0$ then $0+0<=12$

$X+2 Y<=12 \quad$ which side of the line is this region?

$X+2 Y<=12 \quad$ which side of the line is this region?

Region is also below the line

So the allowed region for both inequalities is the common region (the intersection)

Only X and Y in this region are allowed (for $\mathrm{M}=12, \mathrm{~N}=12$)

$$
X+Y<=12 \quad \text { AND } \quad X+2 Y<=12
$$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } \mathbf{P}=3 X+5 Y \quad \rightarrow \quad Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5
$$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } \mathbf{P}=3 X+5 Y \quad \rightarrow \quad Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5
$$

Let's plot the profit line $P=3 X+5 Y$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

Along the profit line, all (X, Y) give the same profit P

All X and Y along this line give the same profit P
Slope $=-1$
Slope $=-3 / 5$
Slope $=-1 / 2$

Slope $=-3 / 5$

Slope $=-1 / 2$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

Along the profit line, all (X, Y) give the same profit P

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

We keep moving the profit line upwards until the last feasible point is touched

It is this line!

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

We keep moving the profit line upwards until the last feasible point is touched

It is this line! And this is the only point; $(12,0)$

Now, for X and Y in this region, which one gives the highest profit?

$$
\text { Profit; } P=3 X+5 Y \rightarrow Y=-(3 / 5) X+P / 5, \text { slope }=-3 / 5, Y \text { intercept }=P / 5
$$

So the greatest profit is achieved when $X=12$ and $Y=0$; Profit $=36$

$36=3 X+5 Y$

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

```
X = # tables
Y = # chairs
N = # large blocks
```

$X+2 Y<=M$	\rightarrow	$Y=-(1 / 2) X+M / 2$	slope $=-1 / 2$
$X+Y<=N$	\rightarrow	$Y=-(1) X+N$	slope $=-1$

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

| $X+2 Y<=M$ | \rightarrow | $Y=-(1 / 2) X+M / 2$ |
| :--- | :--- | :--- | slope $=-1 / 20$

We want to find all possible X and Y that satisfy these two equations.

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

```
X = # tables
Y = # chairs
M = # small blocks
N = # large blocks
```

We want to find all possible X and Y that satisfy these two equations.

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

```
X = # tables
Y = # chairs
M = # small blocks
N = # large blocks
```

Now plot the profit line: $3 X+5 Y=P$

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

```
X = # tables
Y = # chairs
M = # small blocks
N = # large blocks
```

Now plot the profit line: $3 X+5 Y=P \quad($ slope $=-3 / 5)$

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

$X=$ \# tables
$\mathrm{Y}=$ \# chairs
M = \# small blocks
$\mathrm{N}=$ \# large blocks

Move the profit line up until it last touches the feasible region

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

X = \# tables
Y = \# chairs
M = \# small blocks
N = \# large blocks

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

So the greatest profit is achieved when $X=0, Y=N$

Now let's look at Case 1: $M>=2 N \rightarrow N<M / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

So the greatest profit is achieved when $X=0, Y=N$

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{array}{llll}
X+2 Y<=M & \rightarrow & Y=-(1 / 2) X+M / 2 & \text { slope }=-1 / 2 \\
X+Y<=N & \rightarrow & Y=-(1) X+N & \text { slope }=-1
\end{array}
$$

X = \# tables
Y = \# chairs
M = \# small blocks
N = \# large blocks

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

```
X = # tables
Y = # chairs
M = \# small blocks
N = \# large blocks
```


The feasible region is:

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

X = \# tables
$\mathrm{Y}=$ \# chairs
M = \# small blocks
N = \# large blocks

Now let's add the profit lines

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

X = \# tables
$\mathrm{Y}=$ \# chairs

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

Now let's add the profit lines
The highest one touches R!

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

Now let's add the profit lines
The highest one touches R!
So R is the point (X, Y) that has the greatest profit

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

X = \# tables
$\mathrm{Y}=$ \# chairs
M = \# small blocks
N = \# large blocks

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

X = \# tables
Y = \# chairs
M = \# small blocks
N = \# large blocks

What is (X, Y) at point R ?
It is where the two lines $X+Y=N$ and $X+2 Y=M$ meet.

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

```
X = \# tables
Y = \# chairs
M = \# small blocks
N = \# large blocks
```

What is (X, Y) at point R ?

It is where the two lines
$X+Y=N$ and $X+2 Y=M$
meet.
We find that $X=2 N-M$

$$
Y=M-N
$$

Now let's look at Case 2: $\mathrm{M}<2 \mathrm{~N} \rightarrow \mathrm{~N}>\mathrm{M} / 2$

$$
\begin{aligned}
& X+2 Y<=M \\
& X+Y<=N
\end{aligned}
$$

X = \# tables
Y = \# chairs
M = \# small blocks
N = \# large blocks

table

\$5

$$
\begin{aligned}
& M=12 \\
& N=12 \\
& M<2 N
\end{aligned}
$$

tables	0	2	3	4	6	8	10	11	12	$X=2 N-M=12$
chairs	6	5	4	4	3	2	1	0	0	$Y=M-N=0$
profit	30	31	29	32	33	34	35	33	36	

$M=20$
$N=12$
$M<2 N$

tables	2	4	5	6	7	8	10	11	12	$X=2 N-M=4$
chairs	9	8	7	6	5	4	2	1	0	$\mathrm{Y}=\mathrm{M}-\mathrm{N}=8$
profit	51	52	50	48	46	44	40	38	36	

$$
\begin{aligned}
& M=25 \\
& N=12 \\
& M>2 N
\end{aligned}
$$

tables	0	4	5	6	7	8	10	11	12	$\mathrm{X}=0$
chairs	12	8	7	6	5	4	2	1	0	$\mathrm{Y}=\mathrm{N}=12$
profit	60	52	50	48	46	44	40	38	36	

A problem for you . . .

A problem for you . . .

	hours per kg Columbian		Mexican
roaster A	1	0	4
roaster B	0	2	12
grind/package	3	2	18
		2.5	
		3	

A problem for you . . .

$$
\begin{array}{cc}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging }
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging }
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging }
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
3 X+2.5 Y=P & \text { profit line, slope }=-1.2
\end{array}
$$

$$
\begin{aligned}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
3 X+2.5 Y=P & \text { profit line, slope }=-1.2
\end{aligned}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
3 X+2.5 Y=P & \text { profit line, slope }=-1.2
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
3 X+2.5 Y=P & \text { profit line, slope }=-1.2
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
3 X+2.5 Y=P & \text { profit line, slope }=-1.2
\end{array}
$$

$$
\begin{array}{cl}
\mathrm{X}<=4 & \text { roaster } \mathrm{A} \\
2 \mathrm{Y}<=12 & \text { roaster } \mathrm{B} \\
3 \mathrm{X}+2 \mathrm{Y}<=18 & \text { grinding, packaging } \\
3.5 \mathrm{X}+2.5 \mathrm{Y}=\mathrm{P} & \text { profit line, } \\
\text { slope }=-1.4
\end{array}
$$

$$
\begin{array}{cl}
\mathrm{X}<=4 & \text { roaster } \mathrm{A} \\
2 \mathrm{Y}<=12 & \text { roaster } \mathrm{B} \\
3 \mathrm{X}+2 \mathrm{Y}<=18 & \text { grinding, packaging } \\
3.5 \mathrm{X}+2.5 \mathrm{Y}=\mathrm{P} & \text { profit line, slope }=-1.4
\end{array}
$$

$$
\begin{array}{cl}
\mathrm{X}<=4 & \text { roaster } \mathrm{A} \\
2 \mathrm{Y}<=12 & \text { roaster } \mathrm{B} \\
3 \mathrm{X}+2 \mathrm{Y}<=18 & \text { grinding, packaging } \\
3.5 \mathrm{X}+2.5 \mathrm{Y}=\mathrm{P} & \text { profit line, }
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5
\end{array} \text { (steeper than }-1.5 \text {) }
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5
\end{array} \text { (steeper than }-1.5 \text {) }
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5 \text { (steeper than }-1.5 \text {) }
\end{array}
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5
\end{array} \text { (steeper than }-1.5 \text {) }
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5
\end{array} \text { (steeper than }-1.5 \text {) }
$$

$$
\begin{array}{cl}
X<=4 & \text { roaster } A \\
2 Y<=12 & \text { roaster } B \\
3 X+2 Y<=18 & \text { grinding, packaging } \\
0 X+2.5 Y=P & \text { profit line, slope }<-1.5
\end{array} \text { (steeper than }-1.5 \text {) }
$$

