CIRCUIT COMPLEXITY

Question 1

We used the following theorem in class:

Theorem 1. For sufficiently large $n \in \mathbb{N}$, there is a Boolean function $f : \{0,1\}^n \to \{0,1\}$, such that the best circuit computing it has size at least $2^n/n$ (equivalently depth $n - \log n$).

The proof of this theorem is done in two parts. Answer the following questions and prove the theorem.

(a) Count the number of n bit Boolean functions. (1 point)

(b) Count the number of different size *s* circuits. You can assume that the internal gates are labeled by \land , \lor gates of fan-in 2 and leaf gates are labeled by 2n literals. (4 points)

Hint I¹, Hint II²

KRW CONJECTURE

Question 2

We showed that KRW conjecture implies $P \neq NC^1$. We did this by constructing a function that had Formula depth complexity $\omega(\log n)$. The best unconditional lower bound we can prove on formula depth complexity of an explicit Boolean function $\approx 3\log n - O(\log \log n)$. Prove this result assuming the KRW conjecture for the following function :

 $\operatorname{And}_n(x,y) = h_x(z_1,\ldots,z_{\log n})$

where $x, y \in \{0,1\}^n$, $h_x : \{0,1\}^{\log n} \to \{0,1\}$ is the Boolean function whose truth table is x and z_i is the parity of the i^{th} consecutive block of $\log n$ bits of y.

(a) Assuming KRW conjecture prove that $D(And_n) \approx 3 \log n$. (1 point)

You can use the following theorem.

Theorem 2. Any formula computing the parity function on k bits has depth at least $2 \log k$.

Now prove that this function is very explicit and the lower bound is almost tight by answering the following questions.

⁽Prove that the number of circuits is upper bounded by $s^{O(s)}$

⁽When counting the circuits check for the symmetries. That is the circuits which compute the same function)

(b) Show that the Andreev function And_n described above can be computed by a polynomial time algorithm given x, y. (1 point)

(c) Show that the Andreev function And_n described above can be computed by a size n^3 formula. (3 points)

 ${\rm Hint}\ I^3$

Question 3

We saw in class that given a de-Morgan formula F computing a function f, we can come up with a protocol II solving KW_f whose communication complexity is D(F) (depth of the formula F). Prove the reverse direction. That is given a deterministic protocol II solving KW_f come up with a formula F computing f whose depth is at most CC(II) (the communication complexity of II). (5 points) Hint I⁴ Hint II⁵

(Prove by induction)

⁽The function h_x is equivalent to a table lookup on x. For example $h_x(0^n) = x_1$, the first bit of x.)

⁽Map Alice, Bob to $\{\vee, \wedge\}$ based on the proof we used in the other direction).