CIRCUIT COMPLEXITY

Question 1

We used the following theorem in class:
Theorem 1. For sufficiently large $n \in \mathbb{N}$, there is a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, such that the best circuit computing it has size at least $2^{n} / n$ (equivalently depth $n-\log n$).

The proof of this theorem is done in two parts. Answer the following questions and prove the theorem.
(a) Count the number of n bit Boolean functions. (1 point)
(b) Count the number of different size s circuits. You can assume that the internal gates are labeled by \wedge, \vee gates of fan-in 2 and leaf gates are labeled by $2 n$ literals. (4 points)
Hint I ${ }^{1}$, Hint II ${ }^{2}$

KRW CONJECTURE

Question 2

We showed that KRW conjecture implies $P \neq N C^{1}$. We did this by constructing a function that had Formula depth complexity $\omega(\log n)$. The best unconditional lower bound we can prove on formula depth complexity of an explicit Boolean function $\approx 3 \log n-O(\log \log n)$. Prove this result assuming the KRW conjecture for the following function :

$$
\operatorname{And}_{n}(x, y)=h_{x}\left(z_{1}, \ldots, z_{\log n}\right)
$$

where $x, y \in\{0,1\}^{n}, h_{x}:\{0,1\}^{\log n} \rightarrow\{0,1\}$ is the Boolean function whose truth table is x and z_{i} is the parity of the $i^{\text {th }}$ consecutive block of $\log n$ bits of y.
(a) Assuming KRW conjecture prove that $D\left(\right.$ And $\left._{n}\right) \approx 3 \log n$. (1 point)

You can use the following theorem.
Theorem 2. Any formula computing the parity function on k bits has depth at least $2 \log k$.
Now prove that this function is very explicit and the lower bound is almost tight by answering the following questions.

[^0](b) Show that the Andreev function And $_{n}$ described above can be computed by a polynomial time algorithm given x, y. (1 point)
(c) Show that the Andreev function And $_{n}$ described above can be computed by a size n^{3} formula. (3 points)

Hint $\left.\right|^{3}$

Question 3

We saw in class that given a de-Morgan formula F computing a function f, we can come up with a protocol Π solving KW_{f} whose communication complexity is $D(F)$ (depth of the formula F). Prove the reverse direction. That is given a deterministic protocol Π solving KW_{f} come up with a formula F computing f whose depth is at most $C С(\Pi)$ (the communication complexity of Π). (5 points) Hint I^{4} Hint I^{5}

[^1]
[^0]:

[^1]:

