BPP Lifting using Inner product

Sajin Koroth (Simon Fraser University)

Joint work with

Arkadev Chaltopadhyay Yuval Filmus Or Meir

Toniann Pitassi

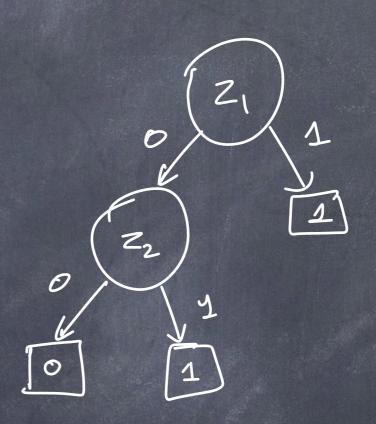
Lifetha

- Transfer lower bounds from weak models to strong
- o Weak: Decision Trees
- o Strong: Communication complexity

Decision Trees

- Model: Tree
 Querying variables
- @ Cost: Depth
- Weak model ->
 Easy to prove lower

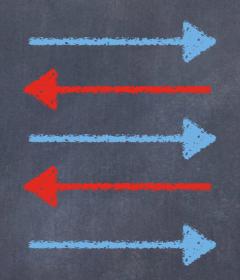
 bounds



Decision tree computing 2-bit OR

Communication Complexity

 $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$



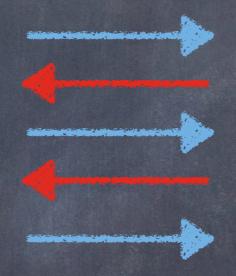


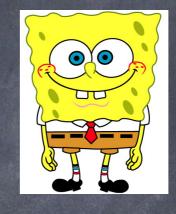
$$Y \in \{0,1\}^n$$

compute f(X, Y)

Cost: number of bits communicated

Communication





 $Y \in \{0,1\}^n$

Is there an index $i \in [n], X_i = 1$ and $Y_i = 1$?

 $DISJ_n(X,Y)$ asks whether if $X \cap Y = \phi$

Guery to Communication

DISJ_n

Alice

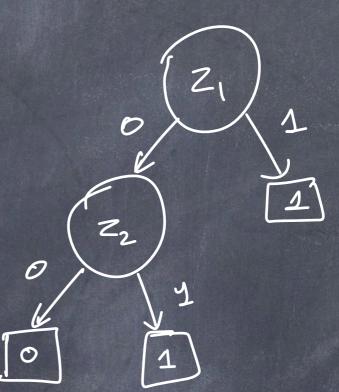
$$X = m_1 m_2 \in \{0/1\}^2$$
 $Y = y_1 y_2 \in \{0/1\}^2$
 $Y = y_1 y_2 \in \{0/1\}^2$

Goal: Compute if $X \cap Y = \emptyset$?

DISJ_n $(X, Y) = \{0\}$

And

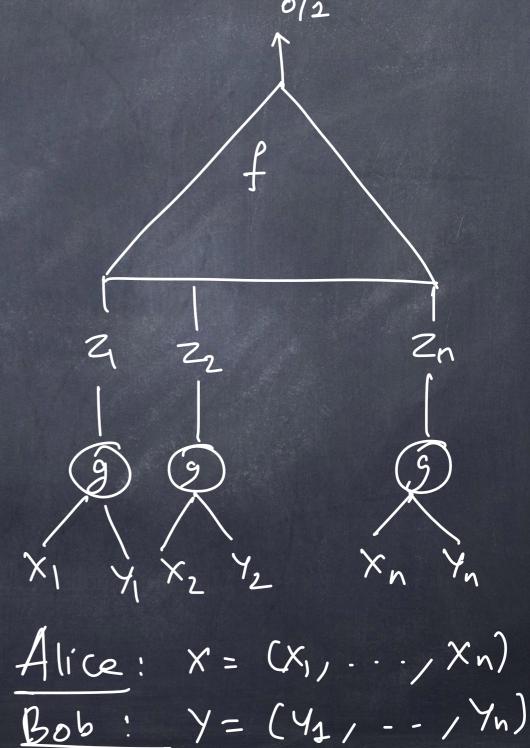
 $X = m_1 m_2 \in \{0/1\}^2$
 $X = m_1 m_2 \in \{0/1$



Decision tree computing
2-bit OR

Lifting to Communication Complexity

- o One party function: $f: \{0,1\}^n \to \{0,1\}$
- o Two party gadget: $g: \{0,1\}^b \times \{0,1\}^b \to \{0,1\}$
- o Composed 2 party function: fog



Lifting theorems Meta statement Decision Tree / Complexity

 $CC(f \circ g) \approx Dt(f) \times CC(g)$

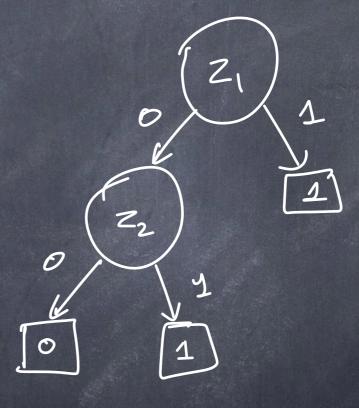
Communication complexity

Easy direction of Lifting

 $CC(f \circ g) \le Dt(f) \times CC(g)$

Protocol for fog

- 1) Alice and Bob compute $Z_1 = g(x_1, y_1)$ using hest protocol for g.
- (2) If z = 1 o/p 1 and stop. Else, compute z,



P=OR

Easy direction of lifting

 $CC(f \circ g) \leq Dt(f) \times CC(g)$

- o T: best decision tree for f
- @ Protocol:
 - a Alice and Bob simulates T
 - θ When T queries z_i , they compute $g(x_i, y_i)$
 - o Cost: #queries x CC(9)

Mhy Lifting Theorems?

- A fundamental question about computation
 - o Is Naive = Optimal?
 - a Direct sum
 - o XOR Lemmas
- o Separations of complexity classes

Brief Survey of results

- © [Ran Raz, Pierre McKenzie '97, Göos, Pitassi, Watson '15]
 - Deterministic Decision tree ->
 Deterministic communication

$$P^{CC}(f \circ INDEX) = P^{Dt}(f) \times \Theta(\log n)$$

$$| NDEX_n = \frac{A|_{ie}}{n} = \frac{B_0 b}{n}$$

$$| H_0|_{S_0} = \log n \qquad | H_0|_{S_0} = \frac{1}{n} = \frac{1}{n}$$

$$| Goal: Find y_n = \frac{1}{n} = \frac{1}{n}$$

Brief survey of results

© [Chattopadhyay, Koucky', Loff, Mukhopadhyay '17, Wu, Yao, Yuen'17] $P^{CC}(f \circ IP) = P^{Dt}(f) \times \Theta(\log n)$

 $X \in \{0,1\}^{\log n} \quad Y \in \{0,1\}^{\log n} \quad \langle X, Y \rangle = \bigoplus_i (X_i \wedge Y_i)$

Goal: Compute

Bob.

IP: Alice

Brief survey of results

- o [Goos, Pitassi, Watson 17]
 - Randomized Decision tree ->
 Randomized communication
 - $BPP^{CC}(f \circ INDEX) = BPP^{Dt}(f) \times \Theta(\log n)$

secry so for

- [GPW'15] $P^{CC}(f \circ INDEX) = P^{Dt}(f) \times \Theta(\log n)$
- [CKLM'17, WYY'17] $P^{CC}(f \circ IP) = P^{Dt}(f) \times \Theta(\log n)$
- [GPW'17] $BPP^{CC}(f \circ INDEX) = BPP^{Dt}(f) \times \Theta(\log n)$

Our Result

Works even for search problems

 $BPP^{CC}(f \circ IP) = BPP^{Dt}(f) \times \Theta(\log n)$

Logarithmic sized gadget of exponentially small discrepancy

*Also: deterministic Lifting

Impliations

- Unification: Gives a unified proof of both deterministic and randomized lifting
- o Improved gadget size
- © Gives a simplified proof of GJ'16: BPP Lower bound for AND-OR, MAJORITY trees

Open Problems

- smaller than logarithmic sized gadgets?
- o "Low" discrepancy gadgets?

Questions?

Thank You