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1 Introduction

We consider longitudinal linked data, deÞned as microdata that contain observations from two or more related
sampling frames with measurements for multiple time periods from all units of observation. Our prototypical
longitudinal linked data set contains observations from work histories, and data on the individuals and
employers observed in those work histories. We are primarily interested in the problem of conÞdentiality
protection when data from all three sampling frames are combined for statistical analysis. Our goal is
to develop and illustrate techniques that are appropriate for a variety of statistical analyses that are in
widespread use in government agencies, like INSEE and the U.S. Census Bureau, and in academic research
in the social sciences.
Current measures for conÞdentiality protection in linked data sets pose a number of problems for analysts.

In particular, since the data sets that are linked are frequently constructed by different statistical agencies,
the set of disclosure limitation requirements for the linked data are generally the union of disclosure limitation
requirements of the several agencies. In practice, this can severely limit the usefulness of the linked data.
These limitations on the usefulness of the resulting data motivate a uniÞed approach to conÞdentiality
protection in linked data.
In analyses of longitudinal linked data, analysts generally choose one of the underlying sampling frames as

the reference population for the statistical modeling. Thus, the data matrix consists of rows that have been
sampled from a speciÞc population (e.g., individuals, jobs, or employers) and the columns consist of functions
of the linked data appropriate for that analysis (e.g., sales/worker or the identity of the employing Þrm in an
analysis of individuals; characteristics of the distribution of employees at several points in time for an analysis
of employers). ConÞdentiality of any of the contributing data Þles can, thus, be compromised by elements
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of either the rows or columns of the resulting data matrix. For example, linked individual information such
as birth date or education can compromise the conÞdentiality of the individual data; linked information
from the work history such as wage rates can compromise the conÞdentiality of both the individual and
employer; linked information from the employer such as annual sales can compromise the conÞdentiality of
the employer data. Our goal is to study methods that mask data from each of the source Þles in a manner
that statistically preserves as much of the complicated relationships among the variables as possible.

1.1 Statistical concepts

We assume that the analyst is interested in the results of a statistical analysis of the form:

Y = f(X,β, ε) (1)

where
£
Y X

¤
is the matrix of all available data (conÞdential and disclosable), f(·), is a (possibly) nonlin-

ear function of X; β is a set of statistical parameters; and ε is a statistical error term distributed according
to pY |X(ε|X,Ω). For completeness, note that X follows the joint distribution function pX(x|Θ). We
will consider methods for protecting the conÞdential data matrix

£
Y X

¤
, primarily the use of multi-

variate multiple imputation techniques where
£
Y X

¤
is drawn from the predictive density, based on

pY |X(ε|X,Ω)pX(x|Θ) and appropriate prior distributions on
¡
Ω Θ

¢
, to protect conÞdentiality for an

entire analysis.

1.2 Background

Most statistical agencies assert that preserving conÞdentiality in longitudinal linked data and creating a
statistically useful longitudinal public use product are incompatible goals.1. Perhaps for this reason, other
researchers have not addressed the issue of disclosure limitation in longitudinal linked data. This is evident
from the material presented in Appendix A, which contains a comprehensive, annotated bibliography of
recent research on disclosure limitation. However, a number of authors have proposed methods for disclosure
limitation for general microdata, some of which are directly relevant to our proposed method. Since these
are discussed in detail in Appendix A, we only brießy summarize these works here.
(Kim and Winkler 1997) describe a two-stage masking technique applied to matched CPS-IRS micro-

data. The Þrst stage of their technique is to mask variables with additive noise from a multivariate normal
distribution with mean zero and the same correlation structure as the unmasked data. In the second stage,
the authors randomly swap quantitative data within collapsed (age × race × sex) cells for records which
pose an unacceptable disclosure risk. This approach preserves means and correlations in the subdomains
on which the swap was done, and in unions of these subdomains. However, the swapping algorithm may
severely distort means and correlations on arbitrary subdomains. Subsequent analysis of the masked data
(e.g., (Moore 1996a) and (Winkler 1998)) indicates that the (Kim and Winkler 1997) approach adequately
preserves conÞdentiality, and generates data which yield valid results for some analyses.
Our proposed approach draws heavily on the related suggestions of (Rubin 1993), (Fienberg 1994), and

(Fienberg, Makov, and Steele 1998). These authors suggest releasing multiple data sets consisting of
synthetic data; (Rubin 1993) suggests generating these data using multiple imputation techniques similar
to those applied to missing data problems; (Fienberg 1994) suggests generating these data by bootstrap
methods. There are numerous advantages to masking data via such methods. For example, valid statistical
analyses of microdata masked by other methods generally require �not only knowledge of which masking
techniques were used, but also special-purpose statistical software tuned to those masking techniques� (Rubin
1993, p. 461). In contrast, analysis of multiply-imputed synthetic data can be validly undertaken using

1See, e.g., (Nadeau, Gagnon, and Latouche 1999) for a discussion of issues surrounding the creation of public use Þles for
Statistics Canada�s longitudinal linked Survey of Labour and Income Dynamics
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standard statistical software simply by repeated application of complete-data methods. Furthermore, an
estimate of the degree to which the disclosure prooÞng technique inßuences estimated model parameters can
be inferred from between-imputation variability. Finally, since the released data are synthetic, i.e., contain
no data on actual units, they pose no disclosure risk. (Fienberg, Makov, and Steele 1998) have presented
an application of such methods to categorical data; (Fienberg and Makov 1998) apply these ideas to develop
a measure of disclosure risk.
In a series of related articles, (Kennickell 1991, 1997, 1998, 2000) describes the FRITZ algorithm, which is

based on Rubin�s (1993) suggestion and has been applied to disclosure limitation in cross-sectional survey data
(the Survey of Consumer Finances, SCF). FRITZ is a sequential, iterative algorithm for imputing missing
data and masking conÞdential data using a sequence of regression models (see Appendix A.3.2 for more
details). In line with the above-mentioned proposals, the algorithm generates multiply-imputed, masked
data. Unlike the suggestions of (Rubin 1993) and (Fienberg 1994), the released data are not synthetic.
Rather, only a subset of cases and variables are masked, and the remaining data are left unmasked. The
FRITZ algorithm has proven quite successful in application to the SCF, and for this reason we suggest its
extension to longitudinal linked data.

1.3 Organization of the Paper

The organization of the paper is as follows. Section 2 presents the details of data masking and data simulation
techniques applied to longitudinal linked data Þles. Section 3 summarizes the use of conventional complete-
data methods for analyzing multiply-masked or simulated data. Section 4 applies our methods to conÞdential
longitudinal linked data from the French national statistical institute. Section 5 provides a brief summary
and conclusions. We include an extensive appendix that relates our methods to those already in the disclosure
limitation literature.

2 Masking ConÞdential Data by Multiple Imputation

Consider a database with conÞdential elements Y and disclosable elements X. Both Y and X may contain
missing data. Borrowing notation from (Rubin 1987), let the subscript mis denote missing data and the
subscript obs denote observed data, so that Y = (Ymis, Yobs) and X = (Xmis,Xobs). We assume throughout
that the missing data mechanism is ignorable.
The database in question is represented by the joint density p (Y,X, θ), where θ are unknown parameters.

Following the related suggestions of (Rubin 1993) and (Fienberg 1994), the basic idea behind our disclosure
limitation method is to draw masked data �Y from the posterior predictive density

p( �Y |Yobs,Xobs) =
Z
p( �Y |Xobs, θ)p (θ|Yobs,Xobs) dθ (2)

to produceM multiply-imputed masked data Þles
³
�Y m,Xm

´
, .where m = 1, ...,M In practice, it is simpler

to Þrst complete the missing data using standard multiple-imputation methods and then generate the masked
data as draws from the posterior predictive distribution of the conÞdential data given the completed data.
For example, Þrst generate M imputations of the missing data (Ymmis,X

m
mis), where each implicate m is a

draw from the posterior predictive density

p (Ymis,Xmis|Yobs,Xobs) =
Z
p (Ymis,Xmis|Yobs,Xobs, θ) p (θ|Yobs,Xobs) dθ. (3)

With completed data Y m = (Y mmis, Yobs) and X
m = (Xm

mis,Xobs) in hand, draw the masked data implicate
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�Y m from the predictive density

p( �Y |Y m,Xm) =

Z
p( �Y |Xm, θ)p (θ|Y m,Xm) dθ (4)

for each imputation m.
The longitudinal linked databases that we consider in this paper are very large and contain a variety of

continuous and discrete variables. Furthermore, they are characterized by complex dynamic relationships
between conÞdential and disclosable elements. For these reasons, specifying the joint probability distribution
of all data, as in (3) and (4), is unrealistic. Instead, we approximate these joint densities using a sequence
of conditional densities deÞned by generalized linear models. Doing so provides a simple way to model
the complex interdependencies between variables that is computationally and analytically tractable. This
method also provides a simple means of accommodating both continuous and categorical data by choice of an
appropriate generalized linear model. We impute missing data in an iterative fashion using a generalization
of Sequential Regression Multivariate Imputation (SRMI) developed by (Raghunathan, Lepkowski, Hoewyk,
and Solenberger 1998). The SRMI approach and its generalization to the case of longitudinal linked data
are described in the Section 2.1. Given the multiply-imputed completed data, we produce masked data on
a variable-by-variable basis as draws from the posterior predictive distribution deÞned by an appropriate
generalized linear model under an uninformative prior. Hence, if we let yk denote a single variable among
the conÞdential elements of our database, masked values �yk are draws from

p (�yk|Y m,Xm) =

Z
p(�yk|Ym∼k,Xm, θ)p (θ|Ym,Xm) dθ (5)

where Y m∼k are completed data on conÞdential variables other than yk.

2.1 The SRMI Approach to Missing Data Imputation

For simplicity, consider a simple data set consisting of N observations on K + P variables, ignoring for the
moment the potential complications of longitudinal linked data. Let X be an N × P design or predictor
matrix of variables with no missing values. Let Y be an N ×K matrix of variables with missing values,
and denote a particular variable in Y by yk. Without loss of generality, assume they are ordered by their
number of missing values, so that y1 has fewer missing values than y2, and so on, though the missing data
pattern need not be monotone. Model-based imputations can use the density for Y given by

p (y1, y2, ..., yK |X, θ1, θ2, ..., θK) = p1 (y1|X, θ1) p2 (y2|X, y1, θ2) ...pK (yK |X, y1, y2, ..., yK−1, θK) (6)

where pk are conditional densities and θk is a vector of parameters in the conditional density of yk, k =
1, ...,K. The SRMI approach is to model each of these conditional densities using an appropriate generalized
linear model with unknown parameters θk, then impute missing values by drawing from the corresponding
predictive density of the missing data given the observed data. Again for simplicity, assume a diffuse prior
on the parameters, i.e., π(θ) ∝ 1.
The SRMI imputation procedure consists of L rounds. Denote the completed data in round ` + 1 on

some variable yk by y
(`+1)
k . In round ` + 1, missing values of yk are drawn from the predictive density

corresponding to the conditional density:

fk
³
yk|y(`+1)1 , y

(`+1)
2 , ..., y

(`+1)
k−1 , y

(`)
k+1, ..., y

(`)
k ,X, θk

´
(7)

where the conditional density fk is speciÞed by an appropriate generalized linear model, and θk are the
parameters of that model. Hence under SRMI, at each round `, the variable under imputation is regressed

4



on all non-missing data and the most recently imputed values of missing data. The imputation procedure
stops after a predetermined number of rounds or when the imputed values are stable. Repeating the
procedure M times yields M multiply-imputed data sets.
Note that if the missing data pattern is monotone (see (Rubin 1987)), then the imputations obtained

in round 1 are approximate draws from the joint posterior predictive density of the missing data given
the observed data. Furthermore, in certain cases the SRMI approach is equivalent to drawing from the
posterior predictive distribution under a fully parametric model. For example, if all elements of Y are
continuous and each conditional regression model is a normal linear regression with constant variance, then
the SRMI algorithm converges to the joint posterior predictive distribution under a multivariate normal
distribution with an improper prior for the mean and covariance matrix ((Raghunathan, Lepkowski, Hoewyk,
and Solenberger 1998), p.11).
The SRMI method can be considered an approximation to Gibbs sampling. A Gibbs sampling approach

to estimating (6) proceeds as follows. Conditional on the values θ(`)2 , ..., θ
(`)
K and Y (`)1 , ..., Y

(`)
K drawn in

round `, draw θ(`+1)1 from its conditional posterior density, which is based on (6). Next, draw the missing
values of y1 conditional on the new value θ

(`+1)
1 , the completed data X, y(`)2 , ..., y

(`+1)
K , and round ` parameter

estimates θ(`)2 , ..., θ
(`)
K . That is, in round `+ 1 the missing values in yk are drawn from:

p∗k
³
yk|X,y(`+1)1 , ..., y

(`+1)
k−1 , y

(`)
k+1, ..., y

(`)
K , θ

(`+1)
1 , ..., θ

(`+1)
k , θ

(`)
k+1, ..., θ

(`)
K

´
, (8)

which is computed based on (6). Though such an approach is conceptually feasible, it is often difficult
to implement in practice, especially when Y consists of a mix of continuous and discrete variables. SRMI
approximates the Gibbs sampler to the extent that (7) approximates (8).

2.2 A Prototypical Longitudinal Linked Data Set

Before discussing the details of imputing missing values and masking longitudinal linked data, we must Þrst
introduce some basic notation. The prototypical longitudinal linked data set that we consider contains
observations about individuals and their employers linked by means of a work history that contains infor-
mation on the jobs each individual held with each employer. The data are longitudinal because complete
work history records exist for each individual during the sample period and because longitudinal data exist
for the employer over the same period. Suppose we have linked data on I workers and J Þrms with the
following Þle structure. There are three data Þles. The Þrst Þle contains data on workers, U , with elements
denoted ui, i = 1, ..., I. In the application below these data are time-invariant but in other applications they
need not be. We refer to U as the individual characteristics. The second data Þle contains longitudinal data
on Þrms, Z, with elements zjt, j = 1, ..., J and t = 1, ..., Tj . We refer to Z as the employer characteristics.
The third data Þle contains work histories, W, with elements wit, i = 1, ..., I and t = 1, ..., Ti. The data U
andW are linked by a person identiÞer. The data Z and W are linked by a Þrm identiÞer; we conceptualize
this by the link function j = J(i, t) which indicates the Þrm j at which worker i was employed at date t. For
clarity of exposition, we assume throughout that all work histories in W can can be linked to individuals in
U and Þrms in Z and that the employer link J(i, t) is unique for each (i, t).2

2.3 Applying SRMI to Missing Data Imputation in Longitudinal Linked Data

With notation in hand, we now discuss applying SRMI to longitudinal linked data. The methods described
in this Section and the next are applied to a particular linked longitudinal database in Section 4.

2The notation to indicate a one-to-one relation between work histories and indviduals when there are multiple employers is
cumbersome. Our application properly handles the case of multiple employers for a given individual during a particular sample
period.
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When imputing missing data in each of the three Þles, we should condition the imputation on as much
available information as possible. For example, when imputing missing data in the worker Þle U we should
condition not only on the non-missing data in U (individual characteristics) but also on characteristics of
the jobs held by the individual (data in W ) and the Þrms at which the individual was employed (data in
Z). Similarly, when conditioning the imputation of missing data in W and Z, we should condition on
non-missing data from all three Þles. This necessitates some data reduction. To understand the data
reduction, consider imputing missing data in the individual characteristics Þle U. Since individuals have
work histories with different dynamic conÞgurations of employers, explicitly conditioning the missing data
imputation of individual characteristics on every variable corresponding to each job held by each worker is
impractical�there are a different number of such variables for each observation to be imputed. A sensible
alternative is to condition on some function of the available data which is well deÞned for each observation.
For example, one could compute the person-speciÞc means of time-varying work history and Þrm variables
and condition the missing data imputation of variables in U on these.3 Similar functions of person- and
job-speciÞc variables can be used to condition missing data imputation in the Þrm Þle Z. In what follows,
we use the functions g, h,m and n to represent these data reductions.
It is also appropriate to condition the imputation of time-varying variables not only on contemporaneous

data, but leads and lags of available data (including the variable under imputation). Because the dynamic
conÞguration of work histories varies from worker to worker and the pattern of Þrm �births� and �deaths�
varies from Þrm to Þrm, not every observation with missing data will have the same number of leads and
lags available as conditioning variables. In some cases, there will be no leads and lags available at all. We
suggest grouping observations by the availability of dynamic conditioning data (i.e., the number of leads
and lags available to condition missing data imputations) and separately imputing missing data for each
group. This maximizes the set of conditioning variables used to impute each missing value. Again, some
data reduction is generally necessary to keep the number of groups reasonable. For example, one might
only condition on a maximum of s leads and lags, with s = 1 or s = 2. We parameterize the set of dynamic
conditioning data available for a particular observation by κit in the work history Þle, and γjt in the Þrm
Þle.
It may also be desirable to split the observations into separate groups on the basis of some observable

characteristics, for example gender, full-time/part-time employment status, or industry. We parameterize
these groups by λi in the individual Þle, µit in the work history Þle, and νjt in the Þrm Þle.
Given an appropriate set of conditioning data, applying SRMI to missing data imputation in longitudinal

linked data is straightforward. The key aspects of the algorithm remain unchanged�one proceeds sequentially
and iteratively through variables with missing data from all three Þles, at each stage imputing missing data
conditional on all non-missing data and the most recently imputed values of missing data. As in the general
case, the optimal imputation sequence is in increasing degree of missingness. As each variable in the sequence
comes up for imputation, observations are split into groups based on the value of κit, γjt, λi, µit, and/or νjt.
The imputes are drawn from a separate predictive density for each group. After the imputes are drawn, the
source Þle for the variable under imputation is reassembled from each of the group Þles. Before proceeding
to the next variable, all three Þles must be updated with the most recent imputations, since the next variable
to be imputed may reside in another Þle (U,W, or Z). At the same time, the functions of conditioning data
(including leads and lags) described above generally need to be re-computed. As in the general case, the
procedure continues for a pre-speciÞed number of rounds or until the imputed values are stable.
Explicitly specifying the posterior predictive densities from which the imputations are drawn is notation-

ally cumbersome. For completeness, we give these in (9), (10), and (11). For a particular variable under
imputation, subscripted by k, we denote by U<k the set of variables in U with less missing data than variable
k; W<k and Z<k are deÞned analogously. We denote by U>k the set of variables in U with more missing

3Because the individual characteritics in our application are time-invariant, we use this approach but it is easy to generalize
to the case where the individual characteristics (as distinct from the job characteristics) vary over time.
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data than variable k, and deÞne W>k and Z>k similarly. As in Section 2, we use the subscript obs to denote
variables with no missing data. We also subscript conditioning variables by i, j, and t as appropriate to
make clear the relationships between variables in the three data Þles. The predictive densities from which
the round `+ 1 imputations are drawn are

Z
fuk

 uk| U (`+1)<k,i , U
(`)
>k,i, Uobs,i, gk

µn
Z
(`+1)
<k,J(i,t), Z

(`)
>k,J(i,t), Zobs,J(i,t)

ot=Ti
t=1

¶
,

hk

µn
W

(`+1)
<k,it ,W

(`)
>k,it,Wobs,it

ot=Ti
t=1

¶
,λi, θk

pk (θk|.) dθk (9)

Z
fwk

 wk| U(`+1)<k,i , U
(`)
>k,i, Uobs,i,

n
Z
(`+1)
<k,J(i,τ), Z

(`)
>k,J(i,τ), Zobs,J(i,τ)

oτ=t+s
τ=t−s

,n
w
(`)
k,iτ

oτ=t+s
τ=t−s,τ 6=t

,
n
W

(`+1)
<k,iτ ,W

(`)
>k,iτ ,Wobs,iτ

oτ=t+s
τ=t−s

,κit, µit, θk

pk (θk|.) dθk (10)

Z
fzk


zk|mk

³
U
(`+1)
<k,J−1(i,t), U

(`)
>k,J−1(i,t), Uobs,J−1(i,t)

´
,n

z
(`)
k,jτ

oτ=t+s
τ=t−s,τ 6=t

,
n
Z
(`+1)
<k,jτ , Z

(`)
>k,jτ , Zobs,jτ

oτ=t+s
τ=t−s

,

nk

µn
W

(`+1)
<k,J−1(i,τ)τ ,W

(`)
>k,J−1(i,τ)τ ,Wobs,J−1(i,τ)τ

oτ=t+s
τ=t−s

¶
, γjt, νjt, θk

pk (θk|.) dθk, (11)

where the posterior densities pk (θk|.) are conditioned on the same information as the probability model for
the kth variable.

2.4 Masking the Completed Data

Repeating the missing data imputation method of the previous section M times yields M sets of completed
data Þles (Um,Wm, Zm) which we shall call the completed data implicates m = 1, ...,M . The implicates
are masked independently by drawing masked values of conÞdential data from an appropriate predictive
distribution such as (5). We call the resultingM masked data Þles the masked data implicatesm = 1, ...,M .
Although in many ways the masking procedure is similar to the missing data imputation method described
above, an important difference is that masking is not iterative. Masked data are drawn only once per
observation-conÞdential variable-implicate triple.
As in the missing data imputation and for the same reasons, some data reduction is required when

specifying the conditioning set for each conÞdential variable. Similarly, dynamic conditioning data (leads
and lags) available for masking a particular variable will vary from observation to observation. Hence, as in
the missing data imputation, it is useful to group observations by the set of such data available to condition
the masking regressions. It is also useful to group observations on the basis of some key variables, such as
gender, full time/part time employment status, and industry, for which we would expect parameters of the
predictive distribution to differ. We retain the same notation for parameterizing these groups as deÞned
above.
The masking algorithm for a single implicate is as follows. First, split each of the three Þles into groups

as described above. Then, for each conÞdential variable, estimate an appropriate generalized linear model
on each group, conditioning on a well chosen subset of the available data from all three Þles. Given the
posterior distribution of the parameters of this generalized linear model, compute a draw from the predictive
distribution for each conÞdential variable in each group. The masked data are these draws from the predictive
distributions. The Þnal step is to reassemble the masked data Þles from the various group Þles. Repeating
this procedure on each completed data implicate yields multiply-imputed masked data. As before, the
predictive densities are deÞned by an appropriate regression model and prior. For a given variable k from
one of the source Þles we draw its masked implicate from the posterior predictive density corresponding
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to an appropriate generalized linear model and an uninformative prior. For a particular implicate, these
predictive densities areZ

fuk

µ
uk| Um∼k,i, gk

µn
ZmJ(i,t)

ot=Ti
t=1

¶
, hk

³
{Wm

it }t=Tit=1

´
,λi, θk

¶
pk (θk|.) dθk (12)

Z
fwk

 wk| Umi ,
n
ZmJ(i,τ)

oτ=t+s
τ=t−s

,n
wmk,iτ

oτ=t+s
τ=t−s,τ 6=t

,
n
Wm
∼k,iτ

oτ=t+s
τ=t−s

,κit, µit, θk

pk (θk|.) dθk (13)

Z
fzk


zk| mk

³
{Umi }i∈{i|j=J(i,t)}

´
,n

zmk,jτ

oτ=t+s
τ=t−s,τ 6=t

,
n
Zm∼k,jτ

oτ=t+s
τ=t−s

,

nk

³
{Wm

iτ }τ=t+sτ=t−s,i∈{i|j=J(i,t)}
´
, γjt, νjt, θk

 pk (θk|.) dθk (14)

where the posterior density of the parameters, pk (θk|.) , is conditioned on the same information as the
conditional density of the variable being masked, and the subscript ∼ k refers to all other variables in the
same source Þle. As always, there is a tradeoff between the analytic usefulness of the masked data Þle and the
degree of conÞdentiality it affords. Below, we discuss various means of understanding the choices involved
in these conßicting objectives.

2.4.1 Improving ConÞdentiality Protection

Our masking procedure preserves the conÞguration of the longitudinal histories in the three data Þles. That
is, although all cases of conÞdential variables are masked, links between records in the three Þles are not
perturbed. This preserves particular dynamic aspects of the database, such as individual work histories
and Þrm births and deaths, as well as the history of worker-Þrm matches. In principle, the assumption
of disclosable history conÞgurations could be relaxed�for example, by perturbing some links between Þles,
censoring some job records, or suppressing data on particular individuals or Þrms. We do not explore these
issues in detail here, but note that perturbing the conÞguration of histories in the masked or completed data
implicates may lead to substantial increases conÞdentiality protection.
A Þnal step before releasing the masked data is to remove unique person and Þrm identiÞers in the

various data Þles. These can be replaced instead with randomly generated ones. Note that the identiÞers
used in the released data need not be the same in each implicate. In fact, using different identiÞers in
each implicate will serve to increase conÞdentiality protection, since this prevents an intruder from easily
combining information about Þrms or individuals across implicates. To do so, records in each implicate
would Þrst need to be statistically matched to records from the other implicates.

2.4.2 Improving Analytic Usefulness

In most applications, substantial improvements in the analytic quality of the masked data can be achieved
by imposing a priori restrictions on the masked values. In general, such restrictions will reduce between-
implicate variability, and hence reduce the level of conÞdentiality protection. Restricting the masked values
can be done in a variety of ways. Sampling from a posterior predictive density proceeds in two steps �
Þrst, sampling from the posterior density of model parameters and, second, sampling from the predictive
density conditional on the parameter draw. Importance sampling of the parameters and/or masked values
is one way to improve the analytic quality of the masked data. In cases where the data are highly collinear,
the usual case in the type of data we are considering, estimates of parameter covariances are likely to
be imprecise. In such cases, restricting parameter draws to central regions of the posterior density can
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dramatically improve the quality of the masked data. Specifying parsimonious masking models will also be
useful in such situations. We demonstrate an application of these methods in Section 4.
For a given parameter draw, restricting the draws of the masked values themselves will also serve to

improve the analytic quality of the masked data. One approach is to restrict draws to central regions of
the predictive density using standard methods. Another approach applicable to continuous variables is to
individually restrict the masked values to lie inside an interval around true values. The interval can be
speciÞed in absolute or percentage terms. For example, one could restrict the masked values to lie within p
percent of the completed values. To do so for a particular observation, sample from the predictive density
until the restriction is satisÞed, or until a pre-speciÞed number of draws have been taken, at which time the
masked value is set equal to one of the endpoints of the interval. An application of this method is described
in Section 4.
Outliers provide two conßicting types of information. First, they may indicate that the original data have

measurement errors (for example, earnings data that have been miscoded). Second, they may indicate that
the underlying population is quite heterogeneous (for example, sales data within broadly deÞned industry
groups). Either case has the potential to severely distort estimates of the masking equations and hence the
masked data. We suggest treating outliers of the Þrst type during the missing data imputation stage. Data
values determined to be outliers of the Þrst type can be set to missing and imputed along with other missing
data. This procedure reduces the inßuence of these observations on both the missing data imputation and
the data masking. It may substantially improve the analytic quality of the masked data. An important
feature of our masking procedure, when combined with restricting the masked values to a range around the
completed values, is that it is robust to outliers of the second type � the outlying values are perturbed in
a manner consistent with the underlying data, without exerting undue inßuence on the masking of other
observations.
We have not yet been explicit about the set of cases to be masked. In principle, not all observations

need to be masked, though our method easily accommodates masking any number of cases in the three data
Þles. Masking only a subset of cases will obviously improve the analytic usefulness of the data, though it
does so at the expense of conÞdentiality protection. An example of such an application is (Kennickell 1997),
who masks sensitive data on a small subset of cases in a cross-sectional Þle of individuals using methods
related to those presented here. Details of the (Kennickell 1997) application can be found in the Appendix.
Traditional disclosure limitation methods may prove useful in preserving information when used in con-

junction with our regression masking method. For example, some variables in the database may not pose a
disclosure risk in aggregated analyses (e.g., occupation or industry) but at a disaggregated level provide an
easy means of compromising the conÞdentiality of records. For such variables, the overall analytic usefulness
of the database may be better preserved by collapsing some cells or using other data coarsening methods
than outright masking. We provide some examples below.

2.5 Simulated Data Based on Disclosable Summary Statistics

Disclosable summary statistics are deÞned as cross tabulations of discrete variables, conditional moments
of continuous variables, generalized linear model coefficients, estimated covariance matrices, and estimated
residual variances from such models. We construct disclosable summary statistics using an automated set
of checks for conditions that are often associated with conÞdentiality preservation in tabulated data. Such
checks normally include cell size and composition restrictions that generate primary suppressions as well as
complementary suppressions generated by transformation tests that prevent the recovery of a suppressed
cell from the released cells, conditional moments, or estimated model statistics. We build a data simulator
that uses this disclosable statistical information to produce simulated draws from the predictive densities
summarized by (12), (13), and (14). For comparability with our analyses of completed and masked data,
we assume that there are also some variables Xm, possibly multiply-imputed for missing data, that can be
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released in micro-data form. We note that if the variables in Xm are all discrete, then such a release is
equivalent to releasing the full cross tabulation of all of the columns of Xm.
We provide M simulated draws from equation (4) using an approximation for the solution to (2). For

each simulated implicate of Y we compute our approximation based on

p( �Y | D (Ym) ,Xm) =

Z
p( �Y | D (Ym) ,Xm, θ)p (θ| D (Ym) ,Xm) dθ (15)

where the relation D (Ym) means that we have replaced the values of the original Ym with aggregated
values based on disclosable moments. To put the simulation procedure in context, we summarize the
relation between the completed, masked and simulated data as follows. The original observed data are
(Yobs,Xobs) . The completed data are multiple imputations based on an approximation to (3). The masked
data are multiple imputations conditional on the completed data and based on an approximation to equation
(4). The simulated data are multiple imputations conditional on traditionally disclosable functions of the
completed data and based on an approximation to equation (15).
The procedure we use to estimate (15) is analogous to the masking procedure described in Section 2.4.

The data in each Þle U , W , and Z, are grouped according to the same conditions that are used to form
λi,κit, µit, and γjt, νjt in the data masking with the following exception. Each data conÞguration implied by
these conditioning sets is subjected to an automatic traditional disclosure analysis that conÞrms that, within
each Þle, the conÞgurations are mutually exclusive, the cell sizes meet a minimum criterion, and there is no
dominant unit. When cells fail such a test, they are collapsed. If no collapse is possible, the offending cell is
suppressed. No marginal cells are used; hence, the margins constitute the complementary suppression where
needed. To avoid notational clutter, we use the same symbols for these data conÞgurations as in Section 2.4.
For each data Þle and each data conÞguration within the Þle, we compute the conditional means of Ym from
completed data implicate m.We form D (Y m) by replacing, for each observation in each data Þle, the value
of Ym with the appropriate conditional mean.4

The exact simulation equations are given byZ
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which is based on equation (12),
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which is based on equation (13),
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which is based on equation (14), and where pk (θk|.) is conditioned on D (Ym) ,Xm. For each posterior
distribution pk (θk|.) we simulate a draw usingM implicates based upon the generalized linear model statistics
estimated for the appropriate masking equation. These statistics are also collapsed and suppressed to conform
to the disclosure criteria used to form D (Y m) .

4Additional moments can be used but we have not implemented this feature in our simulator.
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3 Using the Completed, Masked and Simulated Data for Statisti-
cal Analysis

One of the principal advantages of multiply-imputed data is that valid statistical inferences can be obtained
using standard complete-data methods. We illustrate these formulas for a generic statistic of interest, �Q,
to be computed on multiple data implicates. The multiple implicates can be the result of missing data
imputation (to produce completed data), masking (to produce masked data) or simulation (to produce
simulated data). The formulas relating the complete-data methods and the multiple imputation methods,
use standard relations derived in (Rubin 1987). For convenience, we reproduce these formulas here.
The quantity of interest, Q, may be either a scalar or a k-dimensional column vector. Assume that, with

access to complete conÞdential data, inferences for Q would be based on³
Q− �Q

´
∼ N (0, V )

where �Q is a statistic estimating Q, N (0, V ) is the normal distribution of appropriate dimension, and V the

covariance of
³
Q− �Q

´
. Valid inferences can be obtained using the statistics �Q and V computed on each

of the data implicates. Denote the values obtained on each of the implicates by �Q1, ..., �QM and V1, ..., VM .
The M complete-data statistics are combined as follows. Let

Q̄M =
1

M

MX
m=1

�Qm

denote the average of the complete-data estimates, and

V̄M =
1

M

MX
m=1

Vm

be the average of the complete-data variances. The between-implicate variance of the statistics �Q1, ..., �QM
is

BM =
1

M − 1
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m=1

³
�Qm − Q̄M

´³
�Qm − Q̄M

´T
and the total variance of

¡
Q− Q̄M

¢
is

TM = V̄M +
M + 1

M
BM .

The standard error of a particular element of Q̄M is the square root of the appropriate diagonal element of
TM . Examples of statistical analyses based on multiply-imputed masked data are given in the next section.

4 An Illustration Using French Longitudinal Linked Data
To illustrate the missing data imputation, masking, and simulation procedure described above, we apply
these methods to a French longitudinal linked database on individuals and their employers. The data
consist of both survey and administrative records collected by INSEE (Insitut National de la Statistique et
des Etudes Economiques). The data structure is the same as the prototypical longitudinal linked data set
described in Section 2.2. These data are described in detail in (Abowd, Kramarz, and Margolis 1999).
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4.1 Individual and Work History Data

Individual characteristics and work history data are derived from the �Déclarations Annuelles des Données
Sociales� (DADS), a large-scale administrative database of matched employer-employee information collected
by INSEE. The work history data are based on mandatory employer reports of the gross earnings of each
employee subject to French payroll taxes. These taxes apply to all �declared� employees and to all self-
employed individuals � essentially all employed individuals in the economy.
The Division des Revenus prepares an extract of the DADS for scientiÞc analysis which consists of all

individuals employed in French enterprises who were born in October of even-numbered years, excluding
civil servants. Our data span the years 1976 through 1996, with 1981, 1983, and 1990 excluded because
the underlying administrative data were not collected in those years. Each record corresponds to a unique
individual-year-establishment combination. Observations in the DADS Þle include an identiÞer which cor-
respond to the employee (ID), an identiÞer that corresponds to the establishment (SIRET) and an identiÞer
that corresponds to the economic enterprise of the establishment (SIREN). Since the employer data are
reported at the enterprise level, we are concerned primarily with the enterprise identiÞer.
Since our purposes are mainly illustrative, we select a 20 percent random subsample of individuals in the

DADS for the example application. A strict 10 percent subsample of the DADS, known as the Echantillon
Démographique Permanent (EDP), includes detailed demographic information such as education. Our 20
percent subsample consists of the 10 percent of individuals in the EDP, plus an additional 10 percent random
subsample of the other individuals in the DADS. The resulting subsample consists of 3,213,374 work history
records on 362,913 individuals.
Time-invariant individual variables selected from the DADS for this illustration are gender, year of birth

(range 1912 to 1980), and education. Time-varying job characteristics included are real annual compensation
(annualized wage), occupation, geographic location of employment, full-time/other status, and number of
days paid in the year (range 1 to 360).5 Of these individual and work history variables, year of birth,
education, real annual compensation, and days paid are selected for masking. Occupation is collapsed
to Þve categories and geography is collapsed to two: employed in Ile-de-France (metropolitan Paris) and
otherwise.

4.2 Firm Data

The primary source for our Þrm-level data is the �Enquête Annuelle d�Entreprises� (EAE) collected by INSEE
and organized by SIREN. This survey collects detailed information from economically related establishments
with the same owner (called enterprises) with annual year-end employment greater than 20. Variables
selected from the EAE for this illustration are industry, annual sales, average employment over the year,
and capital stock. Of these, annual sales, average employment, and capital stock are masked. Industry is
collapsed to 40 categories prior to 1992, and 40 (different) categories thereafter.6

The sample of Þrms used for the example consists of Þrms in the EAE matched to work history records
in our 20 percent subsample of the DADS. The Þrm sample is not representative of the French economy as
a whole, which precludes certain analyses at the Þrm level. However, it serves to demonstrate the masking
methods presented above. Our Þrm sample consists of 470,812 annual records on 105,813 enterprises.
We note that not all job records in the DADS can be linked to enterprises in the EAE. Non-matches

arise when individuals are employed at enterprises with fewer than 20 employees and/or nonrespondent
5Days paid is an administrative variable that indicates the part of the year for which an employee received payments. Thus,

by law, 360 days paid is a full-year work. Days paid from 1 to 359 represent payments for less than a full year of work. All
individuals in the sample are permitted paid days of leave in accordance with French law and collective bargaining agreements,
which cover more than 90 percent of all jobs.

6These categories correspond to standard French industrial classiÞcations. In 1993, French industrial classiÞcations changed
from the Nomenclature d�Activités Productives (NAP) system to the Nomenclature d�Activités Francaises (NAF) system.
There is no one-to-one mapping between these classiÞcation systems.
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enterprises. This complicates the missing data imputation and masking since not all worker and job history
records have Þrm data available as conditioning variables.

4.3 Missing Data Imputation Stage

Four of the variables selected for the illustration have missing data. These are education (missing for
approximately half of individuals�those not in the EDP subsample), annual sales (missing in 47,796 matched
EAE records), average employment (missing in 150,833 matched EAE records) and capital stock (missing
in 35,989 matched EAE records). Hence the imputation sequence is capital stock, sales, employment, then
education. This admits some computational efficiencies since the work history and person Þles only need
to be updated with imputed Þrm data once per round (after the imputation of all three Þrm variables).
Before estimating imputation models, observations are grouped as described in Section 2.3. For the Þrm
variable imputations, these groups are deÞned purely by the availability of leads and lags (four groups).7

For the wage outlier imputations, groups are deÞned by the availability Þrm data (due to non-matches), the
availability of leads and lags, by gender, and by full-time/part-time status (20 groups). For the education
imputations, we deÞne groups on the basis of gender and the availability of Þrm data (four groups).
The Þrm variables with missing data are all continuous, so we use linear regression models for the impu-

tation. Since all three are positive and highly skewed, these regression models are estimated in logarithms.
Education is recorded in eight categories, so the appropriate imputation model is multinomial logistic re-
gression.
The annualized wage variable was the only one with problematic outliers. Using the method described

in Section 2.4.2, we set outlying values to missing and impute these along with other missing data. We
detect outliers at the end of the Þrst round of imputation on the other variables with missing data � the
Þrst point at which we have complete data upon which to condition an outlier detection model. Outliers
are detected via a simple log wage regression. Wage values more than Þve standard deviations from their
predicted value are considered outliers. After outliers are set to missing, the annualized wage variable joins
the imputation sequence as the Þrst variable imputed in round 2.
Initial experiments with imputing missing data in our database demonstrated the importance of specifying

a parsimonious imputation model. For the logistic regressions, model selection is done manually. For the
linear regressions we automate the model selection procedure. For each linear model estimated, we specify
a set of candidate conditioning variables. The model is Þrst estimated on all candidate variables. Only
variables that meet the (Schwarz 1978) criterion are retained. The imputation model is then re-estimated
on the reduced set of conditioning variables, and imputed values drawn from the corresponding predictive
distribution. The set of candidate variables are selected along the lines described in Section 2.4. For
the Þrm variables with missing data, candidate variables include up to one lead and lag of the variable
under imputation (where available), contemporaneous values and up to one lead and lag of the other Þrm
variables, Þrm-speciÞc means of contemporaneous values of work history variables for employees, and mean
characteristics of the workers employed at the Þrm in that period.8 Candidate variables for imputing wage
outliers include up to one lead and lag of the log annualized wage (where available), contemporaneous values
and up to one lead and lag of other work history variables, contemporaneous Þrm variables for the Þrm at
which the worker was employed, and worker characteristics. Conditioning variables for imputing missing
education are manually selected from a candidate set of worker characteristics, and worker-speciÞc means of
work history and Þrm variables.
To further improve the quality of the imputed data when drawing from the predictive density, we restrict

parameter draws for all estimated posterior distributions to lie within three standard deviations of the
7The number of groups given in this section correspond to rounds 2 through 10 of the imputation procedure. There are

more groups in round 1 due to missing data on the variables that deÞne the groups.
8For categorical variables in the work history and worker Þles, proportions in a given category are used in place of means.
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posterior mode.9 Initial experiments demonstrated remarkable improvements in the quality of the imputed
data as a result of this restriction because it reduced collinearity of the conditioning data which increased
the precision of posterior parameter covariances.
The imputation procedure consists of 10 rounds. Posterior parameter distributions in the imputation

models change little after the sixth round. We repeat the procedure 10 times, yielding 10 completed data
implicates.

4.4 Masking Stage

ConÞdential variables in each of the completed data implicates were masked using the methods described in
Section 2.4. Observations were split into the same groups as described in the previous section. We used the
same model selection techniques as in the missing data imputation, and restricted parameter draws in the
same way. In addition, we restricted the masked values of continuous variables to lie within p = 20 percent
of the true or imputed value. Masked values were re-drawn until they were within this interval; if after 100
draws the candidate implicate remained outside the interval, the masked value was set equal to the closest
endpoint.
The models used to mask variables that had missing data were the same as those described above. The

additional masked variables, year of birth and days paid, were both treated as continuous and masked using
linear regression. The days paid variable takes values only in the interval between one and 360, so we apply
a logit-like transformation to this variable for masking.10 After masking, both year of birth and days paid
were rounded to the nearest integer.

4.5 Simulation Stage

We simulated the same list of conÞdential variables as in the masking stage. The automatic disclosure
prooÞng resulted in the suppression of data for 434 enterprise-years and the associated work histories. No
individual data were suppressed. Observations were grouped according to the same methods used in the
previous section. Parameter draws from the posterior distribution were restricted as in the imputation and
masking stages. There is no access to the conÞdential micro data in the simulation stage, so the simulated
values cannot be restricted to lie within an interval around the �true� value. Instead, the simulated values
of days paid and year of birth were restricted to the observed sample range of these variables. The models
used to simulate the variables were exactly the same models used to mask these variables, except that some
models could not be used because they did not pass the disclosure tests.

4.6 Statistical Properties of the Completed, Masked and Simulated Data

Tables 1, 2 and 3 present basic univariate properties of conÞdential variables in the completed, masked and
simulated data. Tables 1 and 2 present these for the individual and work history variables by gender. Table
3 presents statistics for the Þrm data. It is apparent that the masked and simulated data retain the basic
univariate properties of the completed data. Biases in the means and variances of masked and simulated
variables are generally small. In relative (percentage) terms, the bias is larger though still well with within
acceptable limits. These biases are smaller in the masked data than the simulated data, and smaller for
Þrm variables than individual and work history variables. The masking and simulation procedures lead to
considerable relative increases in the variance of univariate statistics, as we would expect. These increases
in variance are much more pronounced in the simulated data than in the masked data. In the masked Þrm

9For the logistic regressions, parameters are drawn from the normal approximation to the posterior density.
10This transformation is logit(days paid) = log

³
days paid

365−days paid
´
.
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data, the variance of variable means and variances are at times lower than in the completed data. This is
likely a result of our sampling frame for this illustration not being representative at the enterprise level.
Tables 4, 5 and 6 present basic bivariate properties of the conÞdential variables in the completed, masked

and simulated data. The bivariate statistics are presented as tables of correlation coefficients (below the
diagonal) and the between-implicate variance of the correlation coefficient (above the diagonal). These two
statistics provide the most summary detail without cluttering the tables excessively. Table 4 presents the
correlations among the time-invariant personal characteristics in the individual data Þle for both genders
combined. Table 5 presents the correlations among the time-invariant and time-varying variables linked to
the work history data for both genders combined. Table 6 presents the correlations for the Þrm-level data.
Tables 4 and 5 demonstrate that the masked data fully preserves the bivariate structure of the conÞdential

data at the worker and work history levels. There is almost no bias and relatively little between-implicate
variance complicating the inference about a correlation coefficient. The masked data does have substantially
more between-implicate variance than the completed data; however, never enough to substantially affect
inferences about the magnitude of the correlations. The simulated data preserves the correlation structure
remarkably well given the limitations inherent in the simulation. There is more bias in the simulated data
than in the masked data and the between-implicate variance is substantially greater than with the completed
data but usually not large enough to affect the inference about the correlation coefficient.
Table 6 shows that the masked Þrm data substantially preserves the correlation structure with between-

implicate variation comparable to the completed data. The simulated data display some biases (underes-
timation of the correlation coefficient) and substantially increased between-implicate variation. Given the
sampling frame used to construct the Þrm-level data for this simulation, neither of these outcomes is surpris-
ing. The correlation structure of the simulated data is biased towards zero but not enough to substantially
change economically meaningful conclusions about the bivariate relationships.
Given the structure of our imputation, masking and simulation equations, it is perhaps not surprising

that the masked and simulated data preserve the Þrst two moments so effectively. Our next analyses are
based on models of substantive economic interest. The models predict variables in the work history Þle based
on information in all three linked Þles. They thus provide a very stringent test of the scientiÞc quality of the
masked and imputed data for addressing questions about job-level outcomes.

4.6.1 Modeling Wages With Fixed Individual and Employer Effects

Our Þrst substantive model predicts the log wage rate (real, full time, full year compensation) based on
individual characteristics, employer characteristics, and unobservable individual and employer effects. We
chose this example for two related reasons. First, this model can only be estimated using linked longitudinal
employer-employee data (see (Abowd, Kramarz, and Margolis 1999)). Second, the dependent variable is
among the most studied job-level outcomes in economics; hence, we can use substantial prior information
to interpret the reasonableness of the estimated statistical models. We include only one observation per
individual per time period, selecting the dominant job (based on days paid) for that time period.
The statistical model is a two-factor analysis of covariance with main effects only for the two factors.

The covariates consist of time-varying characteristics of the individual, job, and employer. The Þrst factor
is an individual effect that is decomposed into a function of time-invariant personal characteristics and
unobservable personal heterogeneity. The second factor is a Þrm effect that consists of unobservable employer
heterogeneity. All components of the full design matrix of the model are non-orthogonal. We compute
the full least squares estimator for all the effects by direct solution of the model normal equations using
the conjugate gradient algorithm specialized to the sparse representation of our normal equations.11 We
11Robert Creecy of the U.S. Census Bureau programmed the sparse conjugate gradient implementation as well as the graph-

theoretic identiÞcation algorithm. Both programs are used by the Bureau�s Longitudinal Employer-Household Dynamics pro-
gram.
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calculate the identiÞable person and Þrm effects, for subsequent use in statistical analysis, using a graph-
theoretic analysis of the group structure of the underlying design matrix (see (?)).
Table 7 presents coefficient estimates for the time-varying and time-invariant regressors in the model. All

estimated regression coefficients are shown in the table. The completed data results are essentially the same
as other analyses of these data (e.g. (Abowd, Kramarz, and Margolis 1999)). Wage rates increase with labor
force experience at a decreasing rate. ProÞles for women are ßatter than those for men. There is a premium
for working in Ile-de-France. Wage rates increase as the size of the Þrm increases (using log sales as the
size measure). Often the quadratic term in the log sales relationship is negative but it is essentially zero
in these data. As regards time-invariant personal characteristics, for men each schooling diploma increases
earnings relative to the no-diploma reference group and the usual elementary school, middle school, high
school, college/university, graduate school progression holds. Similar results hold for the women except that
elementary school completion is less valuable than no-diploma.12

To consider the reliability of the estimates from the masked and simulated data, we Þrst examine the
experience proÞles. Figure 1 shows the comparison of the completed, masked and simulated experience
proÞles for men and women. The horizontal axis is years of potential labor force experience (years since
Þnishing school). The vertical axis is the log wage rate. The slope of the log wage proÞle, called the return
to experience, is interpreted as the percentage change in the wage rate associated with a small increase in
experience given the current level of experience. Although the masked coefficients differ from the completed
data coefficients for both genders, the estimated proÞles are essentially identical. The additional variation
associated with the between-implicate component of the variance of the proÞle would not affect inferences
about the experience proÞles in any meaningful way. On the other hand, the proÞles estimated from the
simulated data are substantially ßatter than those estimated from the completed or masked data and the
proÞle for men is slightly ßatter than the one for women. These are meaningful differences that would
materially affect conclusions drawn from the simulated data. One might reasonably ask if there were
indications in the simulated data analysis that the conclusions for this variable would be sensitive to the
simulation. While the standard errors of the model coefficients are somewhat larger for the analysis of the
simulated data, they are not enough larger to provide the necessary signal about the discrepancies shown in
Figure 1.
The comparison of the log sales effect reveals that the masked data are once again quite close to the

completed data and the standard errors of the masked data coefficients are larger than those of the completed
data by a magnitude that allows the completed data estimate to fall within the usual posterior interval ranges
of the masked data. The simulated data analysis of the log sales effect is substantially larger than the effect
measured in either the completed or masked data. In contrast to the experience coefficients, however, there
is plenty of evidence in the simulated data that the log sales effect has been unreliably estimated. Both
the standard errors and the between-implicate component of variation indicate that this effect has been
unreliably estimated in the simulated data.
Comparison of the estimated education effects for men and women reveal that the masked data yields

reliable estimates of these effects. The simulated data yield acceptable results, with estimation uncertainty
comparable to the masked data.
Table 8 compares correlations between the estimated effects in the completed, masked and simulated data.

The correlations are computed over all observations in the work history Þle that enter the data analysis.
The correlations in Table 8 are used to help understand the extent to which time-varying characteristics,
time-invariant characteristics, unobservable person effects, and unobservable Þrm effects contribute to the
explanation of log wage rates. Correlations between the estimated effects and log wages in the completed
data indicate that person effects are somewhat more important than Þrm effects in explaining log wages.
This is the usual result for such analyses using French data, and is accurately reproduced in both the masked
12 In the EDP �no diploma� means that the respondent to the French census declared that he or she did not complete

elementary school.
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and simulated data. The person and Þrm effects are negatively correlated, again the usual result for French
data and reliably reproduced by the masked and simulated data. All correlations with log wage rates are
somewhat attenuated in the simulated data, where the estimated effects explain wage variation less well than
in either the completed or masked data.

4.6.2 Modeling Full-Time/Part-Time Status

Our second substantive model predicts whether an employee in a particular job has full-time status based on
characteristics of the individual (gender, labor force experience and education), the employer (sales, capital
stock and employment), and the job (real wage rate, occupation, location of employment). This example was
chosen for several reasons. First, the dependent variable is always observed and is among the non-conÞdential
characteristics of the job in our masked and simulated data. Thus, the dependent variable has not been
manipulated statistically in either the completed, masked or simulated data. Second, the model we use is
a generalized linear model (logistic regression), which could be more sensitive to the linearity assumptions
used to mask and simulate the continuous variables in the conÞdential data. Third, this variable is often
not available in linked longitudinal employer-employee data and must be imputed. Thus, it is of substantive
interest to estimate a statistical model for full-time status using a linked employer-employee data set in
which the variable is measured.
Table 9 shows that the masked data does an excellent job of preserving inferences about the effects

of individual, job and employer characteristics for predicting full-time status with very little increase in
estimation error. The simulated data perform substantially less well; however, both the standard errors of
the coefficients and the between-implicate component of variance signal the poorer performance of these
data. The effects themselves are tricky to interpret because the equation is conditioned on the actual
full-time wage rate in the job. Thus, the other effects must be interpreted as marginal effects, given the
wage rate. For this reason we place more emphasis on the comparison across the completed, masked and
simulated data sets � leaving the assessment of the reasonableness of any particular set of estimated effects
to the reader.

5 Conclusions
Our goal was to provide a complete description of masking and data simulation algorithms that could be
used to preserve the conÞdentiality of linked, longitudinal data while still providing data analysts with
substantial information about the relationships in those data. We provided full implementation details
for the application of these techniques to prototypical longitudinal linked employer-employee data. The
data completion model is a full implementation of sequential regression multivariate imputation based on
generalized linear models for all data with missing values. Our procedures generalize the existing methods to
preserve the dynamic links among the individual, job, and employer characteristics. Our masking technique
preserves conÞdentiality by replacing the conÞdential data with a draw from the predictive distribution of
those data, given the values of the other conÞdential and non-conÞdential variables, where the predictive
distribution exploits the modeling techniques used to complete the data. Finally, our simulation technique
preserves conÞdentiality by replacing the conÞdential data with a draw from the predictive distribution of
those data, given only disclosable summary statistics.
We apply our techniques to longitudinal linked data from the French national statistical institute. We

show that our masking and simulating techniques do an excellent job of preserving Þrst and second moments
for the individual and work history variables. The performance on the Þrm-level data is not as good but
this result is probably due to the way we specialized our methods to focus on the analysis of variables in the
work history Þle. We believe that focusing our techniques on employer-level data, without insisting upon
links to the work history or individual data would substantially improve their performance. The masked
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data did an excellent job of reproducing the important statistical features of analyses of the wage rate and
full-time employment status variables in the work history Þle. The simulated data did not perform as well
as the masked data but did provide many useful statistical results. The simulated data results were reliable
enough to be combined with restricted access to the conÞdential completed data as a part of a full research
program.
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A Appendix: Recent Research on Disclosure Limitation

In recent years, statistical agencies have seen an increasing demand for the data they collect, coupled with
increasing concerns about conÞdentiality. This presents new challenges for statistical agencies, who must
balance these concerns. Doing so requires techniques to allow dissemination of data that is both analytically
useful and preserves the conÞdentiality of respondents.
This appendix presents recent research on disclosure limitation methods and concepts. Although our

primary interest is in methods appropriate to longitudinal linked data, this topic has not been well-addressed
in the literature. Hence, we review disclosure limitation methods and concepts appropriate to microdata in
general. Since there are a number of reviews which provide a good summary of early research, (e.g., (Sub-
committee on Disclosure Avoidance Techniques 1978a), (Subcommittee on Disclosure Avoidance Techniques
1994b), and (Jabine 1993)), we concentrate on recent research only.
The review is divided into four parts. The Þrst presents general research on the disclosure limitation

problem. The second presents research on measures of disclosure risk and harm. Part three discusses
recent research into disclosure limitation methods for microdata, and the Þnal part discusses the analysis of
disclosure-proofed data.

A.1 General Research and Survey Articles

(Evans, Moore, and Zayatz 1996) This paper summarizes recent applications of a variety of disclosure
limitation techniques to Census Bureau data, and outlines current research efforts to develop new techniques.
The paper brießy discusses methods for microdata (including the two-stage additive noise and data-swapping
technique of (Kim and Winkler 1997), the rank-based proximity swapping method of (Moore 1996b), and
developing synthetic data based on log-linear models), methods under consideration for the 2000 Decennial
Census, and methods for establishment tabular data (see the more detailed discussion of (Evans, Zayatz,
and Slanta 1998) below).

(Fienberg 1997) This paper presents an excellent review of the disclosure limitation problem and recent
research to address it. The paper is organized in eight sections. The Þrst section is introductory. In
the second, the author deÞnes notions of conÞdentiality and disclosure, presents the debate between limited
access versus limited data, and describes the role of the intruder in deÞning notions of disclosure and methods
of disclosure limitation. The third section presents two detailed examples to illustrate the issues, namely
issues surrounding the Decennial Census and the Welfare Reform Act. The fourth section classiÞes various
disclosure limitation methodologies that have been proposed, and illustrates them in some detail. The Þfth
section considers notions of uniqueness in the sample and uniqueness in the population, and their role in
deÞning notions of disclosure risk (see the discussion of (Fienberg and Makov 1998), (Boudreau 1995), and
(Franconi 1999), below). The sixth section presents two integrated proposals for disclosure limitation: the
ARGUS project (see the discussion of (Hundepool and Willenborg 1999) and (Nordholt 1999) below) and
proposals for the release of simulated data (see Section A.3.2 below). The seventh section presents a brief
discussion of issues pertaining to longitudinal data, and section 8 concludes.

(Winkler 1997) This paper brießy reviews modern record-linkage techniques, and describes their applica-
tion in re-identiÞcation experiments. Such experiments can be used to determine the level of conÞdentiality
protection afforded by disclosure limitation methods. The author stresses the power of such techniques to
match records from disclosure-proofed data to other data sources. Emerging record-linkage techniques will
allow re-identiÞcation in many existing public-use Þles, even though these Þles were produced by conscientious
individuals who believed they were using effective disclosure limitation tools.
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(National Research Council 2000) This book describes the proceedings of a workshop convened by
the Committee on National Statistics (CNSTAT) to identify ways of advancing the often conßicting goals of
exploiting the research potential of microdata and preserving conÞdentiality. The emphasis of the workshop
was on linked longitudinal data � particularly longitudinal data linked to administrative data. The workshop
addressed four key issues. These are: (1) the trade-off between increasing data access on the one hand,
and improving data security on the other; (2) the ethical and legal requirements associated with data
dissemination; (3) alternative approaches for limiting disclosure risks and facilitating data access � primarily
the debate between restricting access and altering data; and (4) a review of current agency and organization
practices. Some interesting observations in the report include:

� Researchers participating in the workshop indicated a preference for restricted access to unaltered
data over broader access to altered data. However, these researchers also recognized the research costs
associated with the former option.

� Although linking databases can generate new disclosure risks, it does not necessarily do so. In
particular, many native databases are already sensitive, and hence require conÞdentiality protection.
Linking may create a combined data set that increases disclosure risk, however a disclosure incident
occurring from a linked data source is not necessarily caused by the linking. The breach of disclosure
may have occurred in the native data as well.

� An appropriate measure of disclosure risk is a measure of the marginal risk. In other words, rather
than comparing risks under various schemes with disclosure probability zero, one might consider the
change in probability of disclosure as a result of a speciÞc data release or linkage, or for adding or
masking Þelds in a data set � the marginal risk associated with an action.

� In defense of data alteration methods, Fienberg noted that all data sets are approximations of the real
data for a group of individuals. Samples are rarely representative of the group about which a researcher
is attempting to draw inferences, rather it represents those for whom information is available. Even
population data are imperfect, due to coding and keying errors, missing data, and the like. Hence,
Fienberg Þnds the argument that perturbed data is not useful for intricate analysis not altogether
compelling.

A.2 Measures of Disclosure Risk and Harm

(Lambert 1993) This paper considers various deÞnitions of disclosure, disclosure risk, and disclosure
harm. The author stresses that disclosure is in large part a matter of perception � speciÞcally, what an
intruder believes has been disclosed, even if it is false, is key. The result of a false disclosure may be just
as harmful (if not worse) than the result of a true disclosure. Having distinguished between disclosure risk
and disclosure harm, the author develops general measures of these.
The author deÞnes two major types of disclosure. In an identity disclosure (or identiÞcation, or re-

identiÞcation), a respondent is linked to a particular record in a released data Þle. Even if the intruder
learns no sensitive information from the identiÞcation, it may nevertheless compromise the security of the
data Þle, and damage the reputation of the releasing agency. To distinguish between true identiÞcation
and an intruder�s beliefs about identiÞcation, the author deÞnes perceived identiÞcation, which occurs when
an intruder believes a record has been correctly identiÞed, whether or not this is the case. An attribute
disclosure occurs when an intruder believes new information has been learned about the respondent. This
may occur with or without identiÞcation. The risk of disclosure is deÞned as the risk of identiÞcation of a
released record, and the harm from disclosure depends on what is learned from the identiÞcation.
Suppose the agency holds N records in a data Þle Z, and releases a random sample X = (x1, ...,xn) of

n masked records on p variables. (Lambert 1993) deÞnes several measures of perceived disclosure risk. A
�pessimistic� risk of disclosure is given by:
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D(X) = max
1≤j≤N

max
1≤i≤n

Pr
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ithreleased record is jth respondent�s record|X¤ (19)

= max
1≤j≤N

max
1≤i≤n
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£
xi is jth respondent�s record|X

¤
.

Minimizing the measure in (19) protects against an intruder looking for the easiest record to identify. Al-
ternate measures of disclosure risk can also be deÞned on the basis of (19) , for example:

Daverage (X) =
1

N

NX
j=1

max
1≤i≤n

Pr
£
xi is jth respondent�s record|X

¤
(20)

Dtotal (X) = NDaverage (X) . (21)

Equation (20) is a measure of data vulnerability based on the average risk of perceived disclosure, whereas
(21) is a measure of the cumulative risk. An alternate measure of the total risk of perceived identiÞcation
can be deÞned as the number of cases for which the risk of perceived disclosure exceeds a threshold τ :

Dτ (X) = #

½
j : max

1≤i≤n
Pr
£
xi is jth respondent�s record|X

¤ ≥ τ¾ .

The author proceeds to develop several detailed examples, and provide a general measure of disclosure harm,
which is not presented here.

(Fienberg and Makov 1998) This paper reviews several concepts, namely uniqueness in sample, unique-
ness in the population, and some notions of disclosure. The main contribution is a proposed approach for
assessing disclosure potential as a result of sample uniqueness, based on log-linear models. A detailed
description of this method follows.
Suppose a population is cross-classiÞed by some set of categorical variables. If the cross-classiÞcation

yields a cell with an entry of �1� then the individual associated with this entry is deÞned as a population
unique. Population uniqueness poses a disclosure risk, since an intruder with matching data has the potential
to match his or her records against those of the population unique. This creates the possibility of both re-
identiÞcation and attribute disclosure.
A sample unique is deÞned similarly � an individual associated with a cell count of �1� in the cross-

classiÞcation of the sample data. Population uniques are also sample uniques if they are selected into the
sample, but being a sample unique does not necessarily imply being a population unique. The focus of the
(Fienberg and Makov 1998) approach for assessing disclosure potential is to use uniqueness in the sample to
determine the probability of uniqueness in the population. Note that sample uniqueness is not necessarily
required for such an endeavor � �small� cell counts may also pose a disclosure risk. For example, a count of
�2� may allow an individual with almost unique characteristics to identify the only other individual in the
sample with those characteristics. If the intruder did not also possess these characteristics, then a cell count
of �2� could allow the individuals to be linked to the intruder�s data with probability 1/2. The extension
to larger yet still �small� cell counts is obvious.
Let N denote the population size, n the size of the released sample, and K the maximum number of

�types� of individuals in the data, as deÞned by the cross-classifying variables (i.e., the total number of
cells). Let Fi and fi, i = 1, ...,K, denote the counts in the cells of the multiway table summarizing the
entire population and sample, respectively. Then a crucial measure of the vulnerability of the data is given
by:
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KX
i=1

Pr (Fi = 1| fi = 1) (22)

Most prior attempts to estimate (22) assumed distributions for Fi and fi (e.g., (Bethlehem, Keller, and
Pannekoek 1990) and (Skinner and Holmes 1993)). The (Fienberg and Makov 1998) approach differs by

assuming the released sample is drawn from a population with cell probabilities
n
π
(N)
i

o
which follow a log

linear model (including terms such as main effects interactions), of the form

log(π
(N)
i ) = gN(θi) (23)

where θi are parameters. The authors propose to Þt (23) to the observed counts {fi}. Denote the estimated
cell probabilities

n
�π
(n)
i

o
. Ideally, one would like to develop analytical formulae for Pr(Fi = 1|fi = 1),

but this will frequently be infeasible since many of the log-linear models that result from the estimation
process will not have a closed-form representation in terms of the minimal marginal sufficient statistics.
Instead, the authors propose the following simulation approach. First, use the records on the n individuals
in the sample (x1, ..., xn) to generate (N − n)×H records from

n
�π
(n)
i

o
. This results in H populations of

size N , each containing (N − n) �new� records obtained by some form of imputation (e.g., see (Little and
Rubin 1987)), or multiple imputations from some posterior distribution (e.g., see (Rubin 1987)). Next, let
F̄i(j) = F̄i(x1, ..., xN , j) be the count in cell i of the jth imputed population. Similarly, let f̄i = f̄i(x1, ..., xN)
be the count in cell i of the released data (the sample). Clearly, f̄i 6= 1 =⇒ F̄i(j) 6= 1. We can estimate
(22) by:

KX
i=1

cPr(Fi = 1|fi = 1) = KX
i=1

HX
j=1

1
£¡
F̄i(j) = 1

¢ ∩ ¡f̄i = 1¢¤
H

(24)

where the function 1 [A] = 1 if A is true, and zero otherwise. Equation (24) can be used to assess the
disclosure risk of the released data for a given release size n. Since (24) is likely to decrease as (N − n)
increases, the statistical agency is motivated to reduce n to the point that (24) indicates disclosure is
infeasible. Note that if we remove the summation over i in (24), then we can obtain a cell-speciÞc measure
of disclosure risk.
(Fienberg and Makov 1998) do not address the sample error of the estimate in (24). They also do not

address the inherent trade-off that an agency faces when choosing n based on (24) between reduced disclosure
risk and increased uncertainty in the released data.

(Boudreau 1995) This paper presents another measure of disclosure risk based on the probability of pop-
ulation uniqueness given sample uniqueness. For the case of microdata containing discrete key variables, the
author determines the exact relationship between unique elements in the sample and those in the population.
The author also gives an unbiased estimator of the number of population uniques, based on sample data.
Since this estimator exhibits great sampling variability for small sampling fractions, the author models this
relationship. After observing this conditional probability for a number of real populations, the author pro-
vides a parametric formulation of it. This formulation is empirical only � it has not theoretical justiÞcation.
However, the empirical formulation is much more ßexible than earlier measures of disclosure risk based on
uniqueness which required distributional assumptions (e.g. the Poisson-Gamma model of (Bethlehem, Keller,
and Pannekoek 1990) or the Poisson-Lognormal model of (Skinner and Holmes 1993)).

(Willenborg and Kardaun 1999) This paper presents an alternate measure of disclosure risk appro-
priate to microdata sets for research (as opposed to public use Þles). In such Þles there is generally no
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requirement that all records be absolutely safe, since their use is usually covered by a contractual agreement
which includes a non-record-matching obligation. The approach is to deÞne a measure of the �degree of
uniqueness� of an observation, called a Þngerprint. A Þngerprint is a combination of values of identifying
(key) variables that are unique in the data set at hand, and contain no proper subset with this property
(so it is a minimum set with the uniqueness property). The authors contend that records with �many�
�short� Þngerprints (i.e., Þngerprints comprised of a small number of variables) are �risky�, and should
not be released. Appropriate deÞnitions of �many,� �short� and �risky� are at the discretion of the data
collection/dissemination agency. In this way, deÞning disclosure risk in terms of Þngerprints is very ßexible.
The authors propose that agencies use the Þngerprinting criterion to identify risky records, and then apply
disclosure-limitation measures to these records. The paper contains a discussion of some design criteria for
an implementation of the Þngerprinting criterion, and stipulates some useful heuristics for algorithm design.

(Franconi 1999) This paper reviews recent developments in measures and deÞnitions of disclosure risk.
The author stresses differences between methods appropriate to social data and to business data. These
differences are due to differences in the underlying data. Namely, social data are generally from large
populations, have an inherent dependent structure (i.e., groups such as families or households exist in the
data), and are characterized by key variables of a categorical nature. These characteristics allow one to
tackle the disclosure limitation problem via concepts of uniqueness. Business data, on the other hand are
generally from small populations, with a skewed distribution, and have key variables which are primarily
continuous. Uniqueness concepts are generally not useful here, since nearly all cases would be considered
unique. In both cases, the author stresses the need to take account of hierarchies in the data, such as
the grouping of cases into families and households. These hierarchies provide additional information to an
intruder attempting to identify records, hence they should be incorporated into measures of disclosure risk.

A.3 Disclosure Limitation Methods for Microdata

A.3.1 Additive Noise Methods

(Fuller 1993) This paper considers a variety of masking methods in which error is added to data elements
prior to release. These fall generally within the class of measurement error methods. The author stresses
that to obtain consistent estimates of higher-order moments of the masked data and functions of these
moments such as regression coefficients, measurement error methods and specialized software are required.
Other techniques, such as data switching and imputation, can produce biased estimates of some sample
covariances and other higher-order moments. The approach is related to that of (Kim and Winkler 1997),
but applicable to data which is not necessarily multivariate normal.

(Kim and Winkler 1997) This paper presents a two-stage disclosure limitation strategy, applied to
matched CPS-IRS data. The disclosure concern in this data arises from the match: the CPS data are
already masked, but the IRS tax data is not. The IRS data need to be sufficiently well-masked so they
cannot easily be used in re-identiÞcations, either alone or in conjunction with unmasked key variables from
the CPS. The procedure is as follows.
The data in question are known to be approximately multivariate normal. Hence, in the Þrst stage noise

from a multivariate normal distribution with mean zero and the same correlation structure as the unmasked
data is added to the IRS income variables. As discussed in (Little 1993) and (Fuller 1993), such an approach
is currently the only method that preserves correlations. Following the addition of noise to the data, the
authors determine the re-identiÞcation risk associated with the data by matching the raw linked data to the
masked Þle. In cases where the re-identiÞcation risk was deemed too great, the authors randomly swap
quantitative data within collapsed (age × race × sex) cells. This approach preserves means and correlations
in the subdomains on which the swap was done, and in unions of these subdomains. However, the swapping
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algorithm may severely distort means and correlations on arbitrary subdomains. Finally, the authors assess
both the conÞdentiality protection offered by their method and the analytic usefulness of the resulting Þles,
and conclude that both are good.

(Moore 1996a) This paper provides a critical examination of the degree of conÞdentiality protection and
analytic usefulness provided by the (Kim and Winkler 1997) method. The author concludes that the method
is both useful and highly feasible. The author also considers some particular aspects of the algorithm, such
as optimal parameter values which generate �sufficient� masking with minimal distortion to second moments.
Finally, the author considers how much masking is �sufficient,� given reasonable assumptions on intruder
knowledge, tools, and objectives.

(Winkler 1998) This paper compares the effectiveness of a number of competing disclosure limitation
methodologies to preserve both conÞdentiality and analytic usefulness. The methods considered include the
additive-noise and swapping techniques of (Kim and Winkler 1997), the additive-noise approach of (Fuller
1993), and µ-ARGUS suppression as described in (Hundepool and Willenborg 1999) and (Nordholt 1999) in
Section A.3.3. The author arrives at several conclusions. First, the (Fuller 1993) additive-noise method may
not provide as much protection as that author had originally suggested. In particular, sophisticated matching
techniques may allow for a signiÞcantly higher re-identiÞcation rate than previously thought. Second, a
naive application of µ-ARGUS to the linked CPS-IRS data described in (Kim and Winkler 1997) did little
to preserve either conÞdentiality or analytic usefulness. More sophisticated methods, including a variant of
the (Kim and Winkler 1997) method that included a µ-ARGUS pass on the masked data, were much more
successful. The authors conclude that additive-noise methods can produce masked Þles that allow some
analyses to approximately reproduce the results obtained with unmasked data. When additional masking
procedures are applied such as limited swapping or probability adjustment ((Fuller 1993)), then disclosure
risk is signiÞcantly reduced, though analytic properties are somewhat compromised.

(Duncan and Mukherjee 1998) This paper derives an optimal disclosure limitation strategy for statisti-
cal databases � i.e., micro-databases which respond to queries with aggregate statistics. As in all disclosure
limitation problems, the aim is to maximize legitimate data access while keeping disclosure risk below an
acceptable level. The particular conÞdentiality breach considered is called a tracker attack : a well known
intruder method in databases with query set size (QSR) control. QSR control is a query restriction tech-
nique where a query is disallowed if the number of records satisfying the query is too small (or too large, by
inference from the complementary query). A tracker attack is a Þnite sequence of legitimate queries that
yields the same information as a query precluded under QSR. The authors show that the optimal method
for thwarting tracker attacks is a combination of query restriction and data masking based on additive noise.
The authors also derive conditions under which autocorrelated noise is preferable to independent noise or
�permanent� data perturbation.

(Evans, Zayatz, and Slanta 1998) This paper presents an additive-noise method for disclosure limitation
which is appropriate to establishment tabular data. The authors propose adding noise to the underlying
microdata prior to tabulation. Under their approach, �more sensitive� cells receive more noise than less
sensitive cells. There is no attempt to preserve marginal totals. This proposal has numerous advantages
over the cell-suppression approach which is usually applied to such data. In particular, it is far simpler
and less time-consuming than cell-suppression techniques. It also eliminates the need to coordinate cell
suppressions between tables, and eliminates the need for secondary suppressions, which can seriously reduce
the amount of information in tabular releases. The authors also contend that an additive noise approach
may offer more protection than cell-suppression, although suppression may give the appearance of offering
more protection.
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(Pursey 1999) This paper discusses the disclosure control methods developed and implemented by Sta-
tistics Canada to release a Public Use Microdata File (PUMF) of Þnancial data from small businesses. This
is a fairly unique enterprise � in most cases, statistical agencies deem it too difficult to release public use
microdata on businesses that preserve conÞdentiality. The paper discusses the Þve steps taken to create the
PUMF: (1) make assumptions about an intruder�s motivation, information, and tools; (2) make disclosure
control goals based on these assumptions; (3) translate these goals into mathematical rules; (4) implement
these rules to create the PUMF; and (4) measure the data quality of the PUMF. These are discussed brießy
below.
It is assumed that an intruder seeks to identify any record in the PUMF, and has access to the population

data Þle from which the PUMF records are drawn. It is assumed that identiÞcation is achieved via nearest-
neighbor matching to the population Þle. Given these assumptions, the following disclosure control goals
were set:

� Ensure a low probability that a business from the population appears in the PUMF (less than r%),
and that an intruder cannot determine that a particular business is in the PUMF.

� Ensure that each continuous variable is perturbed and that an intruder cannot undo the perturbation.
� Ensure a low probability that a PUMF record can be correctly linked to itself in the population Þle
(less than p%), and that an intruder cannot determine whether a link has been correctly or incorrectly
made.

� Remove unique records.
Continuous variables were perturbed according to methods similar to those of (Kim and Winkler 1997).

First, independent random noise was added to each datum, subject to the constraints that the minimum and
maximum proportion of random noise is constant for each datum, and that within a record the perturbations
are either always positive or always negative. Next, the three highest data values of each variable in each
cell were replaced with their average. Finally, all data values were rounded to the nearest $1000. Since a
less than p% linkage rate was deemed necessary, in industry cells with a correct linkage rate greater than
p%, the data was further perturbed by data swapping with the second-nearest neighbor until a p% linkage
rate was achieved.
After implementing the above disclosure control methods, the resulting data quality was analyzed. The

general measure used was one of relative distance: Rd = (xa − xb)/(xa + xb), where xa is data or a sample
statistic after disclosure control, and xb is the same data or sample statistic before disclosure control. All
variables in the PUMF and a variety of sample statistics were analyzed according to this distance measure.
The results indicated that the resulting data quality was good to fair for unincorporated businesses, fair to
poor for incorporated businesses.

A.3.2 Multiple Imputation and Related Methods

(Rubin 1993) (Rubin 1993) is the Þrst paper to suggest the use of multiple imputation techniques for
disclosure limitation for microdata analyses. His radical suggestion � to release only synthetic data generated
from actual data by multiple imputation � is motivated by the forces outlined at the outset of this review.
Namely, an increase in the demand for public use microdata, and increasing concern about the conÞdentiality
of such data.
Rubin�s (1993) approach has a number of advantages over competing proposals for disclosure limita-

tion, such as microdata masking. For example, valid statistical analyses of masked microdata generally
require �not only knowledge of which masking techniques were used, but also special-purpose statistical soft-
ware tuned to those masking techniques� ((Rubin 1993, p. 461)). In contrast, analysis of multiply-imputed
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synthetic data can be validly undertaken using standard statistical software simply by using repeated appli-
cations of complete-data methods. Furthermore, an estimate of the degree to which the disclosure prooÞng
techniques inßuence estimated model parameters can be obtained from between-imputation variability. Fi-
nally, since the released data is synthetic, i.e., contains no data on actual units, it poses no disclosure
risk.
The details of Rubin�s (1993) proposal are as follows. Consider an actual microdata sample of size n

drawn using design D from a much larger population of N units. Let X represent background variables
(observed, in principle, for all N units), Z represent outcome variables with no conÞdentiality concerns, and
Y represent outcome variables with some conÞdentiality concerns. Note that Z and Y are only observed for
the n sampled units, and missing for the N − n unsampled units. A multiply-imputed population consists
of the actual X data for all N units, the actual

£
Z Y

¤
data for the n units in the sample, and M

matrices of
£
Z Y

¤
data for the N −n unsampled units, where M is the number of multiple imputations.

The multiply-imputed values of
£
Z Y

¤
are obtained from some model with predictors X. Given such a

multiply-imputed population and a new survey designD∗ for the microdata to be released (possibly the same
asD), the statistical agency can draw a sample of n∗ ¿ N units from the multiply-imputed population which
is structurally like an actual microdata sample of size n∗ drawn from the actual population using design D∗.
This can be done M times to create M replicates of the

£
Z Y

¤
values. To ensure that no actual data

are released, the statistical agency could draw the samples from the multiply-imputed population excluding
the n actual units.
(Rubin 1993) recognizes the information loss inherent in the multiple-imputation technique. However,

some aspect of this information loss are subtle, and he presents these as the following two facts. First,
although the actual

£
Z Y

¤
and the population values of X contain more information than the multiply-

imputed population, if the imputation model is correct, then as M increases, the information in the latter
is essentially the same as in the former. Second, the information in the original microdata sample of size n
may be greater than, less than, or equal to the information in the multiply-imputed sample of size n∗; the
relationship will depend on the estimand under investigation, the relative sizes of n and n∗, the magnitude
of M , the designs D and D∗, and the ability of X to predict

£
Z Y

¤
.

(Fienberg 1994) (Fienberg 1994) proposes a method of conÞdentiality protection in the spirit of (Rubin
1993). Whereas (Rubin 1993) suggests generating synthetic microdata sets by multiple imputation, (Fien-
berg 1994) suggests generating synthetic microdata by bootstrap methods. This method retains many of
the desirable properties of Rubin�s (1993) proposal � namely disclosure risk is reduced because only synthetic
data are released, and the resultant microdata can be analyzed using standard statistical methods.
To discuss the details of his proposal, let us restate the statistical agency�s problem. As before, suppose

the agency collects data on a random sample of size n from a population of size N (ignore aspects of the
sample design). Let F be the true p-dimensional c.d.f. of the data in the population, and let F̄ be the
empirical c.d.f. based on the sample of size n. The disclosure problem arises because researchers request,
in essence, access to the full empirical p-dimensional c.d.f., F̄ . Because of guarantees of conÞdentiality, the
agency believes it cannot release F̄ since an intruder may be able to identify one or more individuals in the
data.
Fienberg�s (1994) proposal is as follows. Suppose the statistical agency has a �smoothed� estimate of the

c.d.f., �F, derived from the original sample c.d.f. F̄ . Rather than releasing either F̄ or �F, the agency could
sample from �F and generate a synthetic bootstrap-like sample of size n. Denote the empirical c.d.f. of the
synthetic microdata Þle as Ḡ. (Fienberg 1994) notes some technical details surrounding Ḡ which have yet
to be addressed. Namely, under what conditions would replicates of Ḡ, say Ḡi for i = 1, ..., B, be such that
as B → ∞, 1

B

PB
i=1 Ḡi → �F ? Is a single replicate sufficient, or would multiple replicates be required for

valid analyses, or possibly the average of multiple replicates? Bootstrap theory may provide some insight
into these issues.
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(Fienberg, Makov, and Steele 1998) The authors reiterate Feinberg�s (1994) proposal for generating
synthetic data via bootstrap methods, and present a related application to the case of categorical data.
Categorical data can be represented by a contingency table, for which there is a direct relationship between
a speciÞc hierarchical loglinear model and a set of marginal tables that represent the minimal sufficient
statistics of the model. The authors present an example of a three-way table, for which they obtain
maximum likelihood estimates of the expected cell values under a loglinear model. The suggestion is to
release the MLEs as a public use product, rather than the actual data. They then generate 1,000,000 tables
with the same two-way margins, and perform a goodness-of-Þt test based on the MLEs. They Þnd that the
sparseness of the table in their example presents some problems for accurate loglinear modeling.
In a comment to this article, (Kooiman 1998) expresses doubt as to the feasibility of the (Fienberg 1994)

and (Fienberg, Makov, and Steele 1998) proposal for generating synthetic data. He makes a connection
between the proposed method and a data-swapping exercise subject to Þxed margins. (Kooiman 1998)
shows that for large data sets with many categorical variables and many categories, such an exercise is likely
impossible. He also Þnds the relationship between the synthetic data proposal and the categorical data
example tenuous, at best.

(Kennickell 1991), (Kennickell 1997), (Kennickell 1998), (Kennickell 2000) In a series of articles,
(Kennickell 1991), (Kennickell 1997), (Kennickell 1998), (Kennickell 2000), describes the Federal Reserve
Imputation Technique Zeta (FRITZ), used for both missing value imputation and disclosure limitation in
the Survey of Consumer Finances (SCF). The SCF is a triennial survey administered by the Federal Reserve
Board to collect detailed information on all household assets and liabilities. Because holdings of many types
of assets are highly concentrated in a relatively small fraction of the population, the SCF heavily oversamples
wealthy households. Since such households are likely to be well-known, at least in their localities, the data
collection process presents a considerable disclosure risk. As a Þrst step towards implementing the proposal
of (Rubin 1993), the SCF simulates data for a subset of sample cases, using the FRITZ multiple imputation
algorithm. This approach is highly relevant for our current research, and hence we discuss it in some detail
here.

Using The FRITZ Algorithm for Missing Data Imputation As mentioned above, the FRITZ
algorithm is used both for missing value imputation and disclosure limitation in the SCF. The algorithm is
most easily understood in the context of missing data imputation. We return to the issue of its application
to disclosure limitation below.
The FRITZ model is sequential in the sense that it follows a predetermined path through the survey

variables, imputing missing values one (occasionally two) at a time. The model is also iterative in that it
proceeds by Þlling in all missing values in the survey data set, using that information as a basis for imputing
the following round, and continuing the process until key estimates are stable. Five imputations are made
for every missing value, hence the method is in the spirit of Rubin�s (1993) proposal. The following describes
the FRITZ technique for imputing missing continuous variables.
For convenience, suppose the iterative process has completed `−1 rounds, and we are currently somewhere

in round `, with a data structure as given below: (reproduced from (Kennickell 1998))
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

Iteration `−1
y1 χ`−111 x12 x13
Ψ`−12 χ`−121 x22 χ`−123

y3 x31 x32 x33
...
yn−2 xn−2,1 xn−2,2 xn−2,3
yn−1 xn−1,1 χ`−1n−1,2 xn−1,3
Ψ`−1n χ`−1n1 χ`−1n2 xn3





Iteration `

y1 · x12 x13
· r21 x22 ·
y3 x31 x32 x33
...
rn−2 xn−2,1 xn−2,2 xn−2,3
yn−1 xn−1,1 χ`n−1,2 xn−1,3
· rn1 χ`n2 xn3


Here, y indicates complete (non-missing) reports for the variable currently the subject of imputation; Ψp

represents round p imputations of missing values of y; x represents complete reports of the of the set of
variables available to condition the imputation; χp represents completed imputations of x from iteration
p. Variables that were originally reported as a range but are not currently imputed are represented by r,
and · represents values that are completely missing that are not yet imputed. Every x variable becomes a
y variable at its place in the sequence of imputations within each iteration. Note that no missing values
remain in the stylized `− 1 data set.
Ideally, one would like to condition every imputation on as many variables as possible, as well as on

interactions and higher powers of those terms. Of course there are always practical limits to such a strategy
due to degrees of freedom constraints, and some judgement must be applied in selecting a �maximal� set
of conditioning variables, X. Of that maximal set, not every element may be non-missing at a given
stage of imputation. For each variable to be imputed, the FRITZ algorithm determines the set of non-
missing variables among the maximal set of of conditioning variables for each observation, denoted X(i) for
observation i. Given the set of available conditioning variables X(i), the model essentially regresses the
target imputation variable on the subset of conditioning variables using values from the previous iteration of
the model. This process is made more efficient by estimating a maximal normalized cross-product matrix for
each variable to be imputed, denoted

P
(X,Y )`−1 , and then subsetting the rows and columns corresponding

to the non-missing conditioning variables for a given observation, denoted
P¡

X(i), Y
¢
`−1 . The imputation

for observation i in iteration ` is thus given by:

Ψi` = β(i)`X(i)i` + ei` (25)

where X(i)i` is the rows of X(i)` corresponding to i; X(i)` is the subset of X that is available for i in iteration

`; β(i)` =
P¡

X(i)X(i)
¢−1
`−1

P¡
X(i)Y

¢
`−1 , and ei` is a random error term. Once a value is imputed, its

imputed value is used (along with reported values) in conditioning later imputations.
The choice of error term ei` has been the subject of several experiments (see (Kennickell 1998)). In

early releases of the SCF, ei` was taken to be a draw from a truncated normal distribution. The draw was
restricted to the central 95 percent of the distribution, with occasional supplementary constraints imposed
by the structure of the data or respondent-provided ranges for the variable under imputation. More recently,
ei` has been drawn from an empirical distribution.
The FRITZ algorithm for imputing multinomial and binary variables works similarly, with an appropriate

�regression� substituted for (25) .

Using The FRITZ Algorithm for Disclosure Limitation The FRITZ algorithm is applied to
the conÞdentiality protection problem in a straightforward manner. In the 1995 SCF, all dollar values for
selected cases were simulated. The procedure is as follows. First, a set of cases which present excessive
disclosure risk are selected (see (Kennickell 1997)). These are selected on the basis of having unusual
levels of wealth or income given other characteristics, or other unusual combinations of responses. Second,
a random set of cases is selected to reduce the ability of an intruder to determine even the set of cases
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determined to present an excessive disclosure risk. Then, a new data set is created for all the selected cases,
and shadow variables (which detail the �type� of response given for a particular case-variable pair, e.g., a
complete report, a range report, or non-response) are set so that the FRITZ model interprets the responses
as range responses. The type of range mimics one where the respondent volunteered a dollar range � a dollar
amount of ±p percent (where p is and undisclosed number between 10 and 20 percent) is stored in a data set
normally used to contain unique range reports. Finally, the actual dollar values are set to missing, and the
FRITZ algorithm is applied to the selected cases, using the simulated range reports to constrain the imputed
values. Subsequent evaluation of the 1995 SCF ((Fries, Johnson, and Woodburn 1997)) indicates that while
the imputations substantially masked individual cases, the effect on important distributional characteristics
was minimal.

A.3.3 Other Methods

(Moore 1996b) This paper presents a brief overview of data-swapping techniques for disclosure limitation,
and presents a more sophisticated technique than found elsewhere in the literature. The author presents
an algorithm for a controlled data swap based on the rank-based proximity swap of (Greenberg 1987). The
contribution in this paper is to provide a technique which preserves univariate and bivariate relationships
in the data. Based on a simulation using the 1993 Annual Housing Survey Public Use File, the author
concludes that the algorithm preserves the desired moments to an acceptable degree (and hence retains some
degree of analytic usefulness), while providing a level of conÞdentiality protection comparable to simple
additive-noise methods.

(Moore 1996c) This paper suggests modiÞcations to the ConÞdentiality Edit, the data-swapping proce-
dure used for disclosure limitation in the 1990 Decennial Census. The suggested improvements are based
on the ARGUS system for determining high-risk cases (see (Hundepool and Willenborg 1999) and (Nordholt
1999) below), and the German SAFE system for perturbing data. The author also presents two measures
of the degree of distortion induced by the swap, and an algorithm to minimize this distortion.

(Mayda, Mohl, and Tambay 1997) This paper examines the relationship between variance estimation
and conÞdentiality protection in surveys with complex designs. In particular, the authors consider the
case of the Canadian National Population Health Survey (NPHS), a longitudinal survey with a multi-stage
clustered design. To prepare a public use Þle, it was deemed necessary to remove speciÞc design information
such as stratum and cluster identiÞers due to the extremely detailed level of geography they represented.
Furthermore, providing cluster information could allow users to reconstitute households, increasing the
probability of identifying individuals. However, speciÞc design information is necessary to correctly compute
variances using jackknife or other methods. This highlights yet another aspect of the conßict between
providing high quality data and protecting conÞdentiality. The authors describe the approach taken to
resolve this conßict. SpeciÞcally, strata and clusters are collapsed to form �super-strata� and �super-clusters�
in the public use Þle, which protect conÞdentiality while providing enough information for researchers to
obtain unbiased variance estimates under certain conditions. The drawback of this approach is that it does
not generate the exact variance corresponding to the original design, and that collapsing reduces degrees of
freedom and hence the precision of variance estimates.

(Nadeau, Gagnon, and Latouche 1999) This paper presents a discussion of conÞdentiality issues
surrounding Statistics Canada�s Survey of Labour and Income Dynamics (SLID), and presents the release
strategy for microdata on individual and family income. SLID is a longitudinal survey designed to support
studies of economic well-being of individuals and families, and of their determinants over time. With
the demise of the Canadian Survey of Consumer Finances (SCF) in 1998, SLID became the official source
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of information for both longitudinal and cross-sectional income data on individuals and families. This
presented some rather unique issues for disclosure limitation.
Prior to integrating SLID and SCF, Statistics Canada did not release sufficient information in the SLID

Public Use Microdata Files (PUMFs) to allow household reconstitution. It was considered too difficult to
protect conÞdentiality at the household level in a longitudinal microdata Þle. However, since integrating
SLID and SCF, it has become a priority to release cross-sectional PUMFs that meet needs of former SCF
users. In particular, the cross-sectional PUMFs now contain household and family identiÞers, which allow
household and family reconstitution. This compromises the release of longitudinal PUMFs. Instead,
Statistics Canada has opted to explore other options for the release of longitudinal data � namely release of
synthetic Þles, and creation of research data centres. In the meantime, a number of disclosure limitation
methods have been explored for the cross-sectional PUMFs to limit the ability of intruders to link records
dynamically (constructing their own longitudinal Þle, considered �too risky� for re-identiÞcation) and/or
re-identify records by linking to the Income Tax Data File (ITDF).
The disclosure control methods applied in the cross-sectional PUMFs include both data reduction and

data modiÞcation methods. The data reduction methods include dropping direct identiÞers, aggregating
geographic variables, and categorical grouping for some occupational variables. Data modiÞcation methods
are applied to numeric variables. In particular, year of birth is perturbed with additive noise; income
variables are both bottom- and top-coded, and the remaining values are perturbed with a combined random-
rounding and additive noise method.
Finally, the authors assess how successful these measures are at protecting conÞdentiality and maintaining

analytical usefulness. To address the former, they consider both linking consecutive cross-sectional PUMFs
and linking to the ITDF. In both cases, they consider both direct matches and nearest-neighbor matches.
They Þnd that the ability of an intruder to match records in either consecutive PUMFs or to the ITDF
is severely limited by the disclosure control measures. As for the usefulness of the data, they Þnd little
difference in the marginal distribution of most variables at highly aggregated levels (i.e., the national level),
but more signiÞcant differences at lower levels of aggregation (i.e., the province×sex level).

(Hundepool and Willenborg 1999), (Nordholt 1999) These papers describe the τ -ARGUS and µ-
ARGUS software packages developed by Statistics Netherlands for disclosure limitation. (Nordholt 1999)
describes their speciÞc application to the Annual Survey on Employment and Earnings (ASEE). The τ-
ARGUS software tackles the problem of disclosure limitation in tabular data. It automatically applies a
series of primary and secondary suppressions to tabular data on the basis of a dominance rule: a cell is
considered unsafe if the n major contributors to that cell are responsible for at least p percent of the total
cell value. The µ-ARGUS software is used to create a public use microdata Þle from the ASEE. The public
use microdata has to satisfy two criteria, which are implemented with µ-ARGUS: Þrst, every category of
an identifying variable must occur �frequently enough� (200,000 times is the default for ASEE); second,
every bivariate combination of values must occur �frequently enough� (1,000 times is the default for ASEE).
These objectives are achieved via global recoding and local suppression.

A.4 Analysis of Disclosure-Proofed Data

(Little 1993) (Little 1993) develops a model-based likelihood theory for the analysis of masked data.
His approach is to formally model the mechanism whereby case-variable pairs are selected for masking,
the masking method, and derive an appropriate model for analysis of the resulting data. His method is
sufficiently general to allow for a variety of masking selection mechanisms, and such diverse masking methods
as deletion, coarsening, imputation, and aggregation. The formal theory follows.
Let X = {xij} denote an (n× p) unmasked data matrix of n observations on p variables. LetM = {mij}

denote the masking indicator matrix, where mij = 1 if xij is masked, and mij = 0 otherwise. Let Z = {zij}
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denote the masked data, i.e., zij is the masked value of xij if mij = 1, and zij = xij if mij = 0. Model the
joint distribution of X, Z, andM with the density function:

f (X,Z,M|θ) = fX (X|θ) fZ (Z|X) fM (M|X,Z) . (26)

Here fX (X|θ) is the density of the unmasked data given unknown parameters θ, which would be the basis for
analysis in the absence of masking; fZ (Z|X) formalizes the masking treatment; and fM (M|X,Z) formalizes
the masking selection mechanism. If the analyst knows which values are masked and the method masking,
then the analyst knows M, as well as the distributions of M and Z. If not, then M is unknown. A more
general speciÞcation would also index the distributions of M and/or Z by unknown parameters, and a full
likelihood analysis would then involve both θ and these unknown masking parameters.
Let X = (Xobs,Xmis) and Z = (Zobs,Zmis) where obs denotes observed components, and mis denotes

missing components of each matrix. Analysis of the masked data is based on the likelihood for θ given the
dataM,Xobs, and Zobs. This is obtained formally by integrating the joint density in (26) over the missing
values Xmis and Zmis :

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) fZ (Z|X) fM (M|X,Z) dXmisdZmis. (27)

Since the distribution of M in (27) may depend on X and Zobs, but should not depend on Zmis, we can
write fM (M|X,Z) = fM (M|X,Zobs) . Thus we can rewrite (27) as:

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) f∗Z (Zobs|X) fM (M|X,Zobs) dXmis (28)

where f∗Z (Zobs|X) =
R
fZ (Z|X) dZmis.

The author notes that the likelihood in (28) can be simpliÞed if the masking selection and treatment
mechanisms satisfy certain ignorability conditions, in the sense of (Rubin 1976) and (Rubin 1978). SpeciÞ-
cally, if the masking selection mechanism is ignorable, then fM (M|X,Z) = fM (M|Xobs,Zobs) for all Xmis,
Zmis. In this case, the density ofM can be omitted from (28). Similarly, the masking treatment mechanism
is ignorable if f∗Z (Zobs|X) = f∗Z (Zobs|Xobs) for all Xmis. In this case, the density of Zobs can be omitted
from (28). Finally, if both mechanisms are ignorable, then the likelihood reduces to:

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) dXmis

which is proportional to the marginal density of Xobs.
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Figure 1

Experience Profile in Wage Regression With Fixed Worker and Firm Effects
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TABLE 1: UNIVARIATE STATISTICS ON COMPLETED, MASKED, AND SIMULATED DATA: MEN

Variable N

Average 
Mean or 

Proportion 
in Category

Average 
Variance of 

Mean

Between 
Implicate 

Variance of 
Mean

Total 
Variance of 

Mean
Relative 

Bias

Relative 
Increase in 
Variance

Average 
Variance

Average 
Variance of 

Variance

Between 
Implicate 

Variance of 
Variance

Total 
Variance of 

Variance
Relative 

Bias

Relative 
Increase in 
Variance

COMPLETED DATA

Year of Birth 201,906 1952 0.001 0 0.001 250.2 0.41 0 0.41
No Diploma 201,906 0.299 1.03E-06 2.68E-03 2.95E-03 0.207 1.69E-07 3.78E-04 4.16E-04
Elementary School 201,906 0.180 7.31E-07 7.83E-05 8.68E-05 0.148 2.99E-07 3.26E-05 3.62E-05
Middle School 201,906 0.112 4.90E-07 4.09E-04 4.51E-04 0.099 2.92E-07 2.42E-04 2.67E-04
High School 201,906 0.060 2.77E-07 4.67E-05 5.17E-05 0.056 2.14E-07 3.69E-05 4.08E-05
Basic Vocational School 201,906 0.215 8.32E-07 6.00E-04 6.61E-04 0.168 2.69E-07 1.98E-04 2.18E-04
Advanced Vocational School 201,906 0.060 2.81E-07 6.13E-05 6.78E-05 0.057 2.16E-07 4.62E-05 5.10E-05
Technical College or University 201,906 0.036 1.71E-07 4.57E-05 5.04E-05 0.034 1.46E-07 3.85E-05 4.25E-05
Graduate School 201,906 0.039 1.84E-07 8.16E-06 9.16E-06 0.037 1.57E-07 6.96E-06 7.81E-06
Log Real Annual Compensation (1980 FF 000) 1,893,555 4.164 4.70E-07 2.37E-09 4.73E-07 0.891 4.19E-06 8.79E-09 4.20E-06
Days Paid (max 360) 1,893,555 263.0 0.009 0 0.009 17987 180 0 180

MASKED DATA

Year of Birth 201,906 1951 0.001 0.009 0.011 -0.001 7.856 236.4 0.43 1.75 2.36 -0.055 4.734
No Diploma 201,906 0.309 1.03E-06 5.32E-03 5.86E-03 0.033 0.982 0.209 1.61E-07 5.35E-04 5.89E-04 0.007 0.414
Elementary School 201,906 0.181 7.31E-07 8.90E-04 9.80E-04 0.005 10.284 0.148 2.93E-07 3.72E-04 4.09E-04 -0.001 10.319
Middle School 201,906 0.105 4.63E-07 6.16E-04 6.78E-04 -0.061 0.503 0.093 2.83E-07 3.90E-04 4.29E-04 -0.056 0.608
High School 201,906 0.056 2.63E-07 7.66E-05 8.46E-05 -0.054 0.636 0.053 2.06E-07 5.98E-05 6.60E-05 -0.051 0.620
Basic Vocational School 201,906 0.208 8.12E-07 9.62E-04 1.06E-03 -0.031 0.602 0.164 2.73E-07 3.44E-04 3.79E-04 -0.024 0.737
Advanced Vocational School 201,906 0.070 3.22E-07 2.82E-04 3.10E-04 0.163 3.579 0.065 2.35E-07 2.07E-04 2.28E-04 0.147 3.468
Technical College or University 201,906 0.032 1.53E-07 6.41E-05 7.07E-05 -0.105 0.402 0.031 1.33E-07 5.54E-05 6.11E-05 -0.103 0.438
Graduate School 201,906 0.038 1.83E-07 1.13E-05 1.26E-05 -0.009 0.376 0.037 1.56E-07 9.66E-06 1.08E-05 -0.008 0.380
Log Real Annual Compensation (1980 FF 000) 1,893,555 4.146 4.58E-07 4.97E-06 5.92E-06 -0.004 11.520 0.867 3.87E-06 4.07E-06 8.34E-06 -0.027 0.987
Days Paid (max 360) 1,893,555 257.4 0.009 0.058 0.073 -0.021 6.672 17039 166 1080 1353 -0.053 6.519

SIMULATED DATA

Year of Birth 201,906 1951 0.001 0.157 0.173 0.000 138.920 174.8 0.24 1.41 1.79 -0.301 3.359
No Diploma 201,906 0.347 1.08E-06 1.02E-02 1.12E-02 0.160 2.798 0.217 1.32E-07 4.60E-04 5.06E-04 0.049 0.215
Elementary School 201,906 0.142 6.02E-07 6.88E-04 7.57E-04 -0.209 7.722 0.122 3.03E-07 3.47E-04 3.82E-04 -0.177 9.573
Middle School 201,906 0.107 4.72E-07 5.90E-04 6.49E-04 -0.041 0.440 0.095 2.86E-07 3.59E-04 3.96E-04 -0.038 0.483
High School 201,906 0.059 2.72E-07 2.77E-04 3.05E-04 -0.016 4.910 0.055 2.08E-07 2.17E-04 2.39E-04 -0.019 4.866
Basic Vocational School 201,906 0.217 8.26E-07 3.39E-03 3.73E-03 0.012 4.651 0.167 2.56E-07 1.04E-03 1.14E-03 -0.007 4.247
Advanced Vocational School 201,906 0.064 2.95E-07 2.94E-04 3.24E-04 0.056 3.775 0.060 2.21E-07 2.16E-04 2.38E-04 0.049 3.653
Technical College or University 201,906 0.031 1.49E-07 8.54E-05 9.41E-05 -0.133 0.866 0.030 1.29E-07 7.42E-05 8.18E-05 -0.129 0.924
Graduate School 201,906 0.033 1.58E-07 2.87E-05 3.17E-05 -0.144 2.458 0.032 1.38E-07 2.52E-05 2.78E-05 -0.140 2.559
Log Real Annual Compensation (1980 FF 000) 1,893,555 4.172 4.17E-07 2.20E-04 2.43E-04 0.002 512.000 0.789 2.00E-06 5.93E-04 6.54E-04 -0.115 154.885
Days Paid (max 360) 1,893,555 256.5 0.007 2.690 2.967 -0.025 311.300 13990 144 41251 45521 -0.222 251.871

Notes: Education categories are the highest degree attained. Relative bias and variance are computed in comparison to the completed data.
Sources: Authors' calculations based upon the INSEE DADS and EDP data 1976-1996.



TABLE 2: UNIVARIATE STATISTICS ON COMPLETED, MASKED, AND SIMULATED DATA: WOMEN

VARIABLE N

Average 
Mean or 

Proportion 
in Category

Average 
Variance of 

Mean

Between 
Implicate 

Variance of 
Mean

Total 
Variance of 

Mean
Relative 

Bias

Relative 
Increase in 
Variance

Average 
Variance

Average 
Variance of 

Variance

Between 
Implicate 

Variance of 
Variance

Total 
Variance of 

Variance
Relative 

Bias

Relative 
Increase in 
Variance

COMPLETED DATA

Year of Birth 161,007 1954 0.001 0 0.001 224.7 0.52 0 0.52
No Diploma 161,007 0.264 1.19E-06 2.74E-03 3.01E-03 0.192 2.66E-07 5.47E-04 6.02E-04
Elementary School 161,007 0.200 9.93E-07 1.17E-04 1.30E-04 0.160 3.57E-07 4.24E-05 4.70E-05
Middle School 161,007 0.150 7.90E-07 3.84E-04 4.24E-04 0.127 3.84E-07 1.89E-04 2.08E-04
High School 161,007 0.082 4.65E-07 8.58E-05 9.49E-05 0.075 3.24E-07 5.92E-05 6.54E-05
Basic Vocational School 161,007 0.148 7.81E-07 1.90E-04 2.10E-04 0.126 3.86E-07 9.62E-05 1.06E-04
Advanced Vocational School 161,007 0.074 4.27E-07 8.23E-05 9.10E-05 0.069 3.08E-07 5.85E-05 6.47E-05
Technical College or University 161,007 0.058 3.37E-07 7.89E-05 8.71E-05 0.054 2.63E-07 6.03E-05 6.66E-05
Graduate School 161,007 0.025 1.50E-07 3.14E-06 3.60E-06 0.024 1.35E-07 2.83E-06 3.25E-06
Log Real Annual Compensation (1980 FF 000) 1,319,819 3.777 8.11E-07 4.32E-09 8.16E-07 1.071 6.39E-06 1.65E-08 6.40E-06
Days Paid (max 360) 1,319,819 260.9 0.014 0 0.014 18122 245 0 245

MASKED DATA

Year of Birth 161,007 1953 0.001 0.016 0.018 0.000 12.245 212.1 0.50 3.36 4.20 -0.056 7.089
No Diploma 161,007 0.239 1.09E-06 6.79E-03 7.47E-03 -0.094 1.482 0.176 3.01E-07 1.05E-03 1.15E-03 -0.084 0.913
Elementary School 161,007 0.193 9.65E-07 6.09E-04 6.70E-04 -0.034 4.147 0.155 3.60E-07 2.33E-04 2.57E-04 -0.029 4.462
Middle School 161,007 0.161 8.31E-07 1.55E-03 1.71E-03 0.074 3.034 0.134 3.71E-07 6.82E-04 7.50E-04 0.052 2.601
High School 161,007 0.082 4.67E-07 1.25E-04 1.38E-04 0.006 0.457 0.075 3.25E-07 8.94E-05 9.87E-05 0.005 0.508
Basic Vocational School 161,007 0.164 8.43E-07 1.26E-03 1.39E-03 0.107 5.616 0.136 3.72E-07 5.89E-04 6.49E-04 0.079 5.109
Advanced Vocational School 161,007 0.073 4.21E-07 2.85E-04 3.14E-04 -0.013 2.449 0.068 3.02E-07 2.03E-04 2.24E-04 -0.015 2.458
Technical College or University 161,007 0.063 3.66E-07 1.69E-04 1.86E-04 0.094 1.139 0.059 2.77E-07 1.29E-04 1.42E-04 0.086 1.136
Graduate School 161,007 0.025 1.50E-07 3.16E-06 3.63E-06 0.001 0.008 0.024 1.36E-07 2.87E-06 3.29E-06 0.001 0.013
Log Real Annual Compensation (1980 FF 000) 1,319,819 3.760 7.89E-07 1.38E-06 2.31E-06 -0.005 1.828 1.042 5.83E-06 3.95E-06 1.02E-05 -0.027 0.588
Days Paid (max 360) 1,319,819 254.5 0.013 0.089 0.111 -0.024 7.055 17010 222 1188 1529 -0.061 5.254

SIMULATED DATA

Year of Birth 161,007 1954 0.001 0.231 0.255 0.000 181.465 160.0 0.28 1.62 2.06 -0.288 2.970
No Diploma 161,007 0.262 1.15E-06 8.66E-03 9.53E-03 -0.007 2.163 0.185 2.69E-07 1.27E-03 1.40E-03 -0.032 1.324
Elementary School 161,007 0.172 8.80E-07 4.92E-04 5.42E-04 -0.143 3.162 0.142 3.76E-07 2.25E-04 2.48E-04 -0.114 4.265
Middle School 161,007 0.162 8.36E-07 1.05E-03 1.16E-03 0.077 1.731 0.135 3.75E-07 4.84E-04 5.33E-04 0.058 1.557
High School 161,007 0.089 4.99E-07 3.39E-04 3.73E-04 0.085 2.936 0.080 3.34E-07 2.28E-04 2.51E-04 0.074 2.840
Basic Vocational School 161,007 0.158 8.22E-07 7.62E-04 8.39E-04 0.069 2.988 0.132 3.78E-07 3.75E-04 4.13E-04 0.052 2.891
Advanced Vocational School 161,007 0.082 4.63E-07 3.42E-04 3.76E-04 0.097 3.134 0.075 3.20E-07 2.38E-04 2.63E-04 0.085 3.058
Technical College or University 161,007 0.053 3.08E-07 1.74E-04 1.92E-04 -0.090 1.201 0.050 2.44E-07 1.37E-04 1.51E-04 -0.087 1.267
Graduate School 161,007 0.024 1.48E-07 1.24E-05 1.38E-05 -0.014 2.833 0.024 1.34E-07 1.13E-05 1.26E-05 -0.014 2.866
Log Real Annual Compensation (1980 FF 000) 1,319,819 3.789 7.41E-07 1.59E-03 1.75E-03 0.003 2140.856 0.978 3.01E-06 3.92E-03 4.32E-03 -0.087 673.020
Days Paid (max 360) 1,319,819 253.3 0.010 5.795 6.384 -0.029 463.974 13327 185 41295 45609 -0.265 185.503

Notes: Education categories are the highest degree attained. Relative bias and variance are computed in comparison to the completed data.
Sources: Authors' calculations based upon the INSEE DADS and EDP data 1976-1996.



TABLE 3: UNIVARIATE STATISTICS ON COMPLETED, MASKED, AND SIMULATED DATA: FIRMS

VARIABLE N
Average 

Mean

Average 
Variance of 

Mean

Between 
Implicate 

Variance of 
Mean

Total 
Variance of 

Mean Relative Bias

Relative 
Increase in 
Variance

Average 
Variance

Average 
Variance of 

Variance

Between 
Implicate 

Variance of 
Variance

Total 
Variance of 

Variance
Relative 

Bias

Relative 
Increase in 
Variance

COMPLETED DATA

Log Sales (FF millions) 470,812 10.58 4.39E-06 3.19E-05 3.95E-05 2.07 2.59E-05 4.95E-05 8.04E-05
Log Capital Stock (FF millions) 470,812 8.50 9.51E-06 6.86E-06 1.71E-05 4.48 1.32E-04 6.28E-05 2.01E-04
Log Average Employment 470,812 4.33 2.57E-06 9.44E-05 1.06E-04 1.21 1.20E-05 7.45E-05 9.40E-05

MASKED DATA

Log Sales (FF millions) 470,812 10.56 4.37E-06 2.54E-05 3.23E-05 -0.002 -0.183 2.06 2.56E-05 4.32E-05 7.30E-05 -0.012 -0.091
Log Capital Stock (FF millions) 470,812 8.48 9.45E-06 1.47E-05 2.56E-05 -0.002 0.502 4.45 1.28E-04 6.23E-05 1.96E-04 -0.028 -0.021
Log Average Employment 470,812 4.31 2.55E-06 8.93E-05 1.01E-04 -0.004 -0.054 1.20 1.17E-05 7.85E-05 9.81E-05 -0.024 0.044

SIMULATED DATA

Log Sales (FF millions) 470,378 10.59 1.45E-06 2.30E-04 2.54E-04 0.001 5.439 0.68 2.16E-06 1.22E-04 1.37E-04 0.704 0.704
Log Capital Stock (FF millions) 470,378 8.51 3.79E-06 2.52E-03 2.77E-03 0.002 161.704 1.78 1.93E-05 1.83E-03 2.04E-03 9.154 9.154
Log Average Employment 470,378 4.34 7.26E-07 5.55E-04 6.11E-04 0.002 4.739 0.34 8.70E-07 2.83E-04 3.12E-04 2.318 2.318

Notes: Relative bias and variance are computed in comparison to the completed data. Unweighted statistics.
Sources: Authors' calculations based on the INSEE EAE data 1978-1996.



TABLE 4: BIVARIATE STATISTICS FOR INDIVIDUALS: MEN AND WOMEN COMBINED

CORRELATIONS IN COMPLETED DATA  (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) Male 1 0.00000 0.00320 0.00016 0.00135 0.00071 0.00081 0.00015 0.00082 0.00008
(2) Year of Birth -0.07 1 0.00029 0.00008 0.00038 0.00006 0.00003 0.00004 0.00003 0.00001
(3) No Diploma 0.04 0.15 1 0.00071 0.00017 0.00019 0.00036 0.00035 0.00018 0.00011
(4) Elementary School -0.03 -0.34 -0.30 1 0.00030 0.00006 0.00033 0.00007 0.00004 0.00002
(5) Middle School -0.06 0.18 -0.24 -0.19 1 0.00011 0.00043 0.00010 0.00007 0.00004
(6) High School -0.04 0.09 -0.17 -0.13 -0.10 1 0.00012 0.00003 0.00002 0.00001
(7) Basic Vocational School 0.08 -0.02 -0.30 -0.23 -0.18 -0.13 1 0.00011 0.00008 0.00005
(8) Advanced Vocational School -0.03 -0.02 -0.17 -0.13 -0.10 -0.07 -0.13 1 0.00002 0.00001
(9) Technical College or University -0.05 0.02 -0.14 -0.11 -0.08 -0.06 -0.10 -0.06 1 0.00001
(10) Graduate School 0.04 -0.06 -0.12 -0.09 -0.07 -0.05 -0.09 -0.05 -0.04 1

CORRELATIONS IN MASKED DATA  (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) Male 1 0.00001 0.01511 0.00340 0.00204 0.00052 0.00470 0.00268 0.00114 0.00011
(2) Year of Birth -0.07 1 0.00110 0.00014 0.00074 0.00013 0.00008 0.00004 0.00007 0.00001
(3) No Diploma 0.08 0.13 1 0.00121 0.00030 0.00028 0.00117 0.00052 0.00026 0.00014
(4) Elementary School -0.02 -0.30 -0.30 1 0.00064 0.00012 0.00029 0.00027 0.00014 0.00004
(5) Middle School -0.08 0.17 -0.24 -0.18 1 0.00032 0.00083 0.00020 0.00022 0.00011
(6) High School -0.05 0.08 -0.17 -0.13 -0.10 1 0.00017 0.00005 0.00004 0.00002
(7) Basic Vocational School 0.06 -0.02 -0.30 -0.23 -0.19 -0.13 1 0.00012 0.00012 0.00005
(8) Advanced Vocational School -0.01 -0.02 -0.17 -0.13 -0.11 -0.07 -0.13 1 0.00006 0.00002
(9) Technical College or University -0.07 0.02 -0.14 -0.10 -0.08 -0.06 -0.11 -0.06 1 0.00002
(10) Graduate School 0.04 -0.05 -0.11 -0.09 -0.07 -0.05 -0.09 -0.05 -0.04 1

CORRELATIONS IN SIMULATED DATA (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) Male 1 0.00038 0.02479 0.00319 0.00360 0.00286 0.00578 0.00311 0.00212 0.00041
(2) Year of Birth -0.08 1 0.00067 0.00010 0.00006 0.00015 0.00019 0.00015 0.00014 0.00003
(3) No Diploma 0.09 0.02 1 0.00132 0.00061 0.00040 0.00031 0.00106 0.00053 0.00013
(4) Elementary School -0.04 0.01 -0.29 1 0.00029 0.00013 0.00085 0.00013 0.00006 0.00005
(5) Middle School -0.08 0.01 -0.26 -0.17 1 0.00025 0.00116 0.00010 0.00010 0.00007
(6) High School -0.06 -0.02 -0.18 -0.12 -0.11 1 0.00053 0.00007 0.00003 0.00003
(7) Basic Vocational School 0.07 0.01 -0.32 -0.21 -0.19 -0.14 1 0.00021 0.00018 0.00020
(8) Advanced Vocational School -0.03 0.00 -0.19 -0.12 -0.11 -0.08 -0.13 1 0.00003 0.00002
(9) Technical College or University -0.05 -0.02 -0.14 -0.09 -0.08 -0.06 -0.10 -0.06 1 0.00001
(10) Graduate School 0.03 -0.05 -0.12 -0.07 -0.07 -0.05 -0.08 -0.05 -0.04 1

Notes: N=362,913.
Sources: Authors' calculations based on the INSEE DADS and EDP data.



TABLE 5: BIVARIATE STATISTICS BASED ON THE WORK HISTORY FILE: MEN AND WOMEN COMBINED

CORRELATIONS IN  COMPLETED DATA (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
(1) Male 1 0.00330 0.00018 0.00126 0.00079 0.00107 0.00019 0.00109 0.00010 0.00000 0.00000 0.00000 0.00000
(2) Full Time Employee 0.167 1 0.00008 0.00001 0.00004 0.00002 0.00004 0.00000 0.00003 0.00001 0.00000 0.00000 0.00000 0.00004
(3) Engineer, Professional, or Manager 0.097 -0.008 1 0.00011 0.00004 0.00004 0.00007 0.00006 0.00006 0.00013 0.00009 0.00000 0.00000 0.00000 0.00000
(4) Technician or Technical White Collar 0.001 0.031 -0.155 1 0.00006 0.00004 0.00003 0.00001 0.00004 0.00004 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(5) Other White Collar -0.380 -0.088 -0.205 -0.309 1 0.00037 0.00006 0.00017 0.00011 0.00024 0.00004 0.00011 0.00001 0.00000 0.00000 0.00000 0.00001
(6) Skilled Blue Collar 0.314 0.132 -0.176 -0.265 -0.351 1 0.00049 0.00007 0.00006 0.00002 0.00035 0.00003 0.00003 0.00000 0.00000 0.00000 0.00000 0.00001
(7) Unskilled Blue Collar 0.030 -0.063 -0.158 -0.238 -0.316 -0.271 1 0.00006 0.00007 0.00005 0.00000 0.00007 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(8) Works in Ile-de-France -0.018 -0.007 0.133 0.066 0.034 -0.092 -0.104 1 0.00003 0.00000 0.00001 0.00001 0.00001 0.00001 0.00002 0.00003 0.00000 0.00000 0.00000 0.00000
(9) Year of Birth -0.070 -0.106 -0.094 -0.053 0.082 -0.053 0.083 -0.037 1 0.00019 0.00009 0.00031 0.00005 0.00001 0.00002 0.00003 0.00001 0.00000 0.00000 0.00000 0.00006
(10) No Diploma 0.043 -0.046 -0.102 -0.125 -0.039 0.072 0.166 -0.018 0.086 1 0.00089 0.00023 0.00024 0.00060 0.00039 0.00024 0.00013 0.00009 0.00021 0.00016 0.00020
(11) Elementary School -0.021 0.028 -0.087 -0.063 0.006 0.073 0.041 -0.033 -0.286 -0.269 1 0.00030 0.00006 0.00043 0.00010 0.00005 0.00003 0.00002 0.00002 0.00003 0.00003
(12) Middle School -0.070 -0.035 0.003 0.042 0.073 -0.088 -0.034 0.015 0.177 -0.197 -0.185 1 0.00010 0.00050 0.00010 0.00007 0.00005 0.00007 0.00007 0.00003 0.00007
(13) High School -0.047 -0.032 0.088 0.084 0.023 -0.097 -0.071 0.049 0.100 -0.147 -0.137 -0.101 1 0.00014 0.00003 0.00002 0.00001 0.00005 0.00002 0.00003 0.00002
(14) Basic Vocational School 0.095 0.076 -0.076 -0.021 -0.018 0.112 -0.022 -0.064 0.006 -0.287 -0.269 -0.198 -0.147 1 0.00017 0.00011 0.00008 0.00003 0.00001 0.00002 0.00002
(15) Advanced Vocational School -0.032 0.015 0.025 0.065 0.036 -0.060 -0.059 0.012 -0.010 -0.151 -0.141 -0.104 -0.077 -0.151 1 0.00004 0.00001 0.00003 0.00009 0.00008 0.00007
(16) Technical College or University -0.064 -0.013 0.111 0.136 -0.025 -0.098 -0.083 0.046 0.030 -0.126 -0.117 -0.086 -0.064 -0.126 -0.066 1 0.00001 0.00006 0.00004 0.00004 0.00004
(17) Graduate School 0.043 -0.026 0.291 0.021 -0.064 -0.083 -0.073 0.089 -0.060 -0.103 -0.097 -0.071 -0.053 -0.104 -0.054 -0.045 1 0.00004 0.00001 0.00001 0.00001
(18) Paid Days 0.008 0.239 0.054 0.077 -0.048 0.047 -0.110 -0.045 -0.297 -0.095 0.094 -0.072 -0.041 0.066 0.026 -0.001 0.010 1 0.00000 0.00000 0.00000 0.00002
(19) Log Real Annual Compensation 0.191 0.529 0.207 0.096 -0.120 0.055 -0.168 0.098 -0.165 -0.116 -0.013 -0.026 0.012 0.048 0.049 0.048 0.082 0.110 1 0.00000 0.00000 0.00001
(20) Log Sales 0.060 0.013 0.044 0.068 0.016 -0.042 -0.063 0.030 -0.007 -0.054 -0.038 0.032 0.030 -0.003 0.032 0.025 0.041 0.067 0.131 1 0.00001 0.00001
(21) Log Capital Stock 0.066 0.126 0.046 0.077 0.006 -0.024 -0.082 0.004 -0.072 -0.074 -0.017 0.018 0.025 0.011 0.031 0.024 0.044 0.157 0.185 0.894 1 0.00001
(22) Log Average Employment 0.063 -0.033 -0.004 0.039 -0.019 -0.016 0.003 0.002 -0.059 -0.036 -0.011 0.011 0.008 0.003 0.021 0.010 0.027 0.042 0.073 0.929 0.848 1



TABLE 5 (continued)
CORRELATIONS IN MASKED DATA (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
(1) Male 1 0.00003 0.02205 0.00458 0.00237 0.00077 0.00748 0.00363 0.00161 0.00014 0.00000 0.00000 0.00000 0.00000 0.00000
(2) Full Time Employee 0.167 1 0.00000 0.00069 0.00020 0.00010 0.00001 0.00016 0.00006 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(3) Engineer, Professional, or Manager 0.097 -0.008 1 0.00000 0.00014 0.00006 0.00010 0.00010 0.00008 0.00017 0.00017 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000
(4) Technician or Technical White Collar 0.001 0.031 -0.155 1 0.00000 0.00011 0.00007 0.00005 0.00001 0.00013 0.00012 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(5) Other White Collar -0.380 -0.088 -0.205 -0.309 1 0.00000 0.00325 0.00064 0.00042 0.00012 0.00160 0.00085 0.00016 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(6) Skilled Blue Collar 0.314 0.132 -0.176 -0.265 -0.351 1 0.00000 0.00321 0.00089 0.00020 0.00004 0.00147 0.00022 0.00010 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(7) Unskilled Blue Collar 0.030 -0.063 -0.158 -0.238 -0.316 -0.271 1 0.00000 0.00022 0.00014 0.00008 0.00002 0.00016 0.00004 0.00004 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(8) Works in Ile-de-France -0.018 -0.007 0.133 0.066 0.034 -0.092 -0.104 1 0.00000 0.00022 0.00002 0.00003 0.00005 0.00004 0.00003 0.00009 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000
(9) Year of Birth -0.075 -0.110 -0.091 -0.050 0.086 -0.057 0.079 -0.035 1 0.00096 0.00013 0.00065 0.00015 0.00007 0.00006 0.00011 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000
(10) No Diploma 0.079 -0.037 -0.099 -0.116 -0.040 0.086 0.141 -0.022 0.073 1 0.00154 0.00040 0.00043 0.00189 0.00061 0.00039 0.00020 0.00030 0.00072 0.00000 0.00000 0.00001
(11) Elementary School -0.013 0.027 -0.078 -0.058 -0.001 0.071 0.041 -0.034 -0.251 -0.264 1 0.00076 0.00015 0.00045 0.00038 0.00023 0.00007 0.00003 0.00023 0.00000 0.00000 0.00000
(12) Middle School -0.089 -0.039 0.001 0.037 0.071 -0.087 -0.026 0.015 0.158 -0.197 -0.180 1 0.00036 0.00104 0.00028 0.00026 0.00015 0.00026 0.00014 0.00000 0.00000 0.00000
(13) High School -0.056 -0.031 0.079 0.079 0.026 -0.095 -0.065 0.052 0.091 -0.149 -0.135 -0.102 1 0.00024 0.00007 0.00005 0.00002 0.00006 0.00004 0.00000 0.00000 0.00000
(14) Basic Vocational School 0.063 0.069 -0.072 -0.023 -0.010 0.093 -0.013 -0.060 -0.002 -0.287 -0.258 -0.196 -0.147 1 0.00024 0.00018 0.00008 0.00009 0.00021 0.00000 0.00000 0.00000
(15) Advanced Vocational School -0.003 0.019 0.027 0.061 0.021 -0.050 -0.052 0.006 -0.014 -0.158 -0.143 -0.108 -0.081 -0.155 1 0.00009 0.00003 0.00001 0.00017 0.00000 0.00000 0.00000
(16) Technical College or University -0.087 -0.015 0.097 0.124 -0.011 -0.096 -0.078 0.044 0.031 -0.126 -0.114 -0.086 -0.064 -0.123 -0.068 1 0.00003 0.00005 0.00008 0.00001 0.00000 0.00001
(17) Graduate School 0.046 -0.029 0.278 0.023 -0.061 -0.080 -0.071 0.095 -0.050 -0.106 -0.095 -0.072 -0.054 -0.104 -0.057 -0.046 1 0.00000 0.00003 0.00000 0.00000 0.00000
(18) Paid Days 0.011 0.246 0.055 0.078 -0.051 0.050 -0.111 -0.047 -0.299 -0.092 0.094 -0.071 -0.038 0.067 0.027 -0.003 0.003 1 0.00000 0.00000 0.00000 0.00000
(19) Log Real Annual Compensation 0.193 0.535 0.210 0.098 -0.121 0.056 -0.171 0.100 -0.164 -0.102 -0.009 -0.030 0.009 0.042 0.050 0.037 0.077 0.113 1 0.00000 0.00000 0.00000
(20) Log Sales 0.008 -0.005 0.003 -0.006 -0.007 0.006 0.005 0.004 0.013 0.003 -0.005 0.002 0.001 -0.001 -0.001 -0.003 0.002 -0.010 -0.004 1 0.00000 0.00001
(21) Log Capital Stock 0.008 -0.005 0.008 -0.005 -0.005 0.002 0.001 -0.003 0.017 0.004 -0.007 0.004 0.002 -0.002 0.000 -0.003 0.003 -0.008 -0.002 0.737 1 0.00000
(22) Log Average Employment 0.009 -0.001 0.008 -0.003 -0.008 0.005 0.001 0.006 0.018 0.003 -0.008 0.003 0.003 -0.001 0.000 -0.002 0.002 -0.007 0.001 0.773 0.661 1

MASKED VARIABLES



TABLE 5 (continued)
CORRELATIONS IN SIMULATED DATA (Between Implicate Variance Above Diagonal)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
(1) Male 1 0.00052 0.03068 0.00383 0.00423 0.00416 0.00715 0.00402 0.00326 0.00056 0.00006 0.00036 0.00000 0.00000 0.00000
(2) Full Time Employee 0.167 1 0.00001 0.00071 0.00009 0.00008 0.00008 0.00025 0.00012 0.00009 0.00001 0.00014 0.00064 0.00000 0.00000 0.00000
(3) Engineer, Professional, or Manager 0.097 -0.008 1 0.00002 0.00029 0.00007 0.00014 0.00042 0.00024 0.00020 0.00055 0.00042 0.00000 0.00001 0.00000 0.00000 0.00000
(4) Technician or Technical White Collar 0.001 0.031 -0.155 1 0.00002 0.00015 0.00009 0.00006 0.00013 0.00021 0.00021 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(5) Other White Collar -0.380 -0.088 -0.205 -0.309 1 0.00008 0.00391 0.00045 0.00059 0.00056 0.00139 0.00076 0.00032 0.00006 0.00001 0.00005 0.00000 0.00000 0.00000
(6) Skilled Blue Collar 0.314 0.132 -0.176 -0.265 -0.351 1 0.00011 0.00439 0.00070 0.00022 0.00009 0.00232 0.00031 0.00010 0.00002 0.00001 0.00005 0.00000 0.00000 0.00000
(7) Unskilled Blue Collar 0.030 -0.063 -0.158 -0.238 -0.316 -0.271 1 0.00002 0.00019 0.00018 0.00007 0.00003 0.00019 0.00005 0.00003 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(8) Works in Ile-de-France -0.018 -0.007 0.133 0.066 0.034 -0.092 -0.104 1 0.00001 0.00006 0.00001 0.00007 0.00006 0.00003 0.00002 0.00007 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000
(9) Year of Birth -0.094 -0.039 -0.099 -0.063 0.079 -0.034 0.081 -0.058 1 0.00065 0.00007 0.00007 0.00023 0.00015 0.00016 0.00019 0.00004 0.00001 0.00002 0.00000 0.00000 0.00001
(10) No Diploma 0.083 0.023 -0.102 -0.126 -0.049 0.120 0.127 -0.013 0.018 1 0.00158 0.00096 0.00061 0.00047 0.00152 0.00080 0.00018 0.00004 0.00122 0.00001 0.00000 0.00001
(11) Elementary School -0.035 -0.004 -0.075 -0.063 0.030 0.033 0.048 -0.035 0.012 -0.266 1 0.00038 0.00018 0.00112 0.00020 0.00011 0.00007 0.00001 0.00014 0.00000 0.00000 0.00001
(12) Middle School -0.087 -0.019 0.027 0.062 0.055 -0.089 -0.049 0.020 0.005 -0.255 -0.164 1 0.00037 0.00165 0.00013 0.00015 0.00010 0.00000 0.00023 0.00000 0.00001 0.00000
(13) High School -0.062 -0.023 0.101 0.102 0.011 -0.102 -0.078 0.046 -0.018 -0.183 -0.117 -0.114 1 0.00074 0.00009 0.00004 0.00005 0.00001 0.00024 0.00000 0.00001 0.00000
(14) Basic Vocational School 0.079 0.038 -0.072 -0.028 -0.011 0.087 0.001 -0.058 0.008 -0.316 -0.205 -0.199 -0.142 1 0.00032 0.00029 0.00030 0.00001 0.00020 0.00000 0.00000 0.00000
(15) Advanced Vocational School -0.025 -0.011 0.009 0.050 0.037 -0.051 -0.044 -0.001 0.000 -0.186 -0.118 -0.113 -0.081 -0.141 1 0.00004 0.00003 0.00001 0.00026 0.00000 0.00001 0.00000
(16) Technical College or University -0.061 -0.016 0.104 0.122 -0.024 -0.090 -0.073 0.039 -0.023 -0.137 -0.087 -0.084 -0.060 -0.105 -0.060 1 0.00001 0.00002 0.00031 0.00000 0.00000 0.00000
(17) Graduate School 0.024 -0.034 0.244 0.026 -0.053 -0.075 -0.063 0.079 -0.046 -0.114 -0.073 -0.071 -0.051 -0.089 -0.051 -0.037 1 0.00001 0.00009 0.00000 0.00000 0.00000
(18) Paid Days 0.013 0.258 0.039 0.068 -0.053 0.053 -0.092 -0.040 -0.049 -0.014 -0.006 0.002 0.003 0.012 0.003 0.007 -0.001 1 0.00007 0.00000 0.00000 0.00000
(19) Log Real Annual Compensation 0.198 0.549 0.218 0.101 -0.124 0.056 -0.177 0.085 -0.069 -0.027 -0.034 0.001 0.021 0.010 0.005 0.025 0.041 0.199 1 0.00000 0.00000 0.00000
(20) Log Sales -0.005 -0.003 0.003 0.004 0.004 -0.008 -0.006 0.011 0.000 -0.001 0.000 0.001 0.001 -0.002 0.000 0.001 0.002 -0.001 -0.002 1 0.00014 0.00041
(21) Log Capital Stock -0.005 0.006 0.002 0.004 0.003 -0.003 -0.007 0.012 -0.001 -0.001 0.000 0.000 0.001 -0.001 0.000 0.002 0.002 0.001 0.004 0.562 1 0.00061
(22) Log Average Employment 0.010 0.017 0.004 -0.006 -0.018 0.016 0.011 0.019 -0.001 0.004 -0.002 -0.002 -0.001 0.001 -0.001 -0.001 0.001 0.005 0.014 0.358 0.382 1

Notes: N=3,213,374
Sources: Authors' calculations based on the INSEE DADS and EDP data.

SIMULATED VARIABLES



TABLE 6: BIVARIATE STATISTICS IN THE FIRM DATA

CORRELATIONS IN COMPLETED DATA 
(Between Implicate Variance Above Diagonal)

(1) (2) (3)
(1) Log Sales 1 0.000001 0.000013
(2) Log Capital Stock 0.733 1 0.000003
(3) Log Average Employment 0.767 0.656 1

CORRELATIONS IN MASKED DATA 
(Between Implicate Variance Above Diagonal)

(1) (2) (3)
(1) Log Sales 1 0.000001 0.000011
(2) Log Capital Stock 0.737 1 0.000004
(3) Log Average Employment 0.773 0.661 1

CORRELATIONS IN SIMULATED DATA 
(Between Implicate Variance Above Diagonal)

(1) (2) (3)
(1) Log Sales 1 0.000138 0.000410
(2) Log Capital Stock 0.562 1 0.000614
(3) Log Average Employment 0.358 0.382 1

Notes: N=470,812 in completed and masked data; N=470,378 in the simulated data.
Sources: Authors' calculations based on the INSEE EAE data.



TABLE 7: SUMMARY OF COEFFICIENT ESTIMATES FOR THE ANALYSIS OF A LINEAR MODEL PREDICTING LOG REAL ANNUAL WAGE RATES WITH FIXED PERSON AND FIRM EFFECTS

TIME-VARYING OBSERVABLES
Average 

Coefficient

Average 
Variance  of 
Coefficient

Between- 
Implicate 

Variance of 
Coefficient

Total 
Variance of 
Coefficient

Standard 
Error of 
Average 

Coefficient
Average 

Coefficient

Average 
Variance  of 
Coefficient

Between- 
Implicate 

Variance of 
Coefficient

Total 
Variance of 
Coefficient

Standard 
Error of 
Average 

Coefficient
Average 

Coefficient

Average 
Variance  of 
Coefficient

Between- 
Implicate 

Variance of 
Coefficient

Total 
Variance of 
Coefficient

Standard 
Error of 
Average 

Coefficient
Male x Experience 0.0757 6.88E-07 3.86E-06 4.93E-06 0.0022 0.0470 5.93E-07 4.19E-07 1.05E-06 0.0010 0.0128 6.85E-07 2.31E-05 2.61E-05 0.0051
Male x (Experience2)/100 -0.2676 4.24E-05 1.54E-04 2.12E-04 0.0146 -0.0858 4.27E-05 4.47E-05 9.19E-05 0.0096 -0.0257 5.63E-05 8.29E-05 1.47E-04 0.0121
Male x (Experience3)/1000 0.0519 4.17E-06 1.06E-05 1.58E-05 0.0040 0.0055 4.76E-06 7.63E-06 1.32E-05 0.0036 0.0066 6.62E-06 6.09E-06 1.33E-05 0.0036
Male x (Experience4)/10000 -0.0041 4.76E-08 8.96E-08 1.46E-07 0.0004 0.0001 6.02E-08 1.28E-07 2.01E-07 0.0004 -0.0007 8.43E-08 7.51E-08 1.67E-07 0.0004
Female x Experience 0.0386 1.46E-06 8.82E-07 2.44E-06 0.0016 0.0329 1.31E-06 5.36E-06 7.20E-06 0.0027 0.0167 1.64E-06 7.36E-06 9.74E-06 0.0031
Female x (Experience2)/100 -0.0709 9.66E-05 4.39E-05 1.45E-04 0.0120 -0.0405 1.01E-04 4.20E-04 5.63E-04 0.0237 -0.0425 1.50E-04 2.69E-04 4.45E-04 0.0211
Female x (Experience3)/1000 0.0075 9.91E-06 3.95E-06 1.42E-05 0.0038 0.0006 1.18E-05 4.48E-05 6.11E-05 0.0078 0.0121 1.92E-05 3.17E-05 5.41E-05 0.0074
Female x (Experience4)/10000 -0.0002 1.16E-07 4.08E-08 1.61E-07 0.0004 0.0004 1.53E-07 5.27E-07 7.33E-07 0.0009 -0.0012 2.64E-07 3.80E-07 6.82E-07 0.0008
Male x Works in Ile-de-France 0.0465 1.29E-05 5.12E-07 1.35E-05 0.0037 0.0512 1.32E-05 1.67E-06 1.51E-05 0.0039 0.0690 2.45E-05 1.17E-05 3.74E-05 0.0061
Female x Works in Ile-de-France 0.0391 4.52E-05 8.91E-07 4.62E-05 0.0068 0.0430 4.67E-05 9.50E-06 5.71E-05 0.0076 0.0840 8.76E-05 5.97E-05 1.53E-04 0.0124
Log Sales 0.0024 1.21E-05 3.02E-05 4.54E-05 0.0067 0.0100 1.25E-05 5.17E-05 6.93E-05 0.0083 0.1337 1.40E-04 5.43E-03 6.11E-03 0.0782
(Log Sales)2 0.0005 1.86E-08 6.72E-08 9.25E-08 0.0003 0.0004 1.89E-08 1.15E-07 1.45E-07 0.0004 -0.0051 2.96E-07 8.53E-06 9.68E-06 0.0031

TIME-INVARIANT OBSERVABLES
Male -0.067 2.41E-05 1.79E-04 2.21E-04 0.0149 0.046 3.41E-05 5.22E-04 6.08E-04 0.0247 0.244 2.53E-05 6.69E-03 7.39E-03 0.0859
Male x Elementary School 0.002 1.90E-05 1.54E-04 1.88E-04 0.0137 0.017 2.24E-05 2.98E-04 3.50E-04 0.0187 0.016 2.56E-05 6.32E-05 9.52E-05 0.0098
Male x Middle School 0.179 2.72E-05 7.24E-04 8.24E-04 0.0287 0.155 3.49E-05 4.99E-04 5.84E-04 0.0242 0.157 3.01E-05 5.27E-04 6.10E-04 0.0247
Male x High School 0.315 4.31E-05 8.10E-04 9.34E-04 0.0306 0.316 5.26E-05 3.12E-04 3.96E-04 0.0199 0.274 5.30E-05 5.31E-04 6.37E-04 0.0252
Male x Basic Vocational School 0.149 1.68E-05 2.85E-04 3.30E-04 0.0182 0.130 1.96E-05 2.16E-04 2.57E-04 0.0160 0.051 1.83E-05 1.21E-04 1.51E-04 0.0123
Male x Advanced Vocational School 0.291 3.92E-05 2.19E-04 2.80E-04 0.0167 0.268 4.09E-05 9.53E-04 1.09E-03 0.0330 0.162 4.09E-05 3.48E-04 4.23E-04 0.0206
Male x Technical College or University 0.490 6.97E-05 6.33E-04 7.66E-04 0.0277 0.483 9.26E-05 4.79E-04 6.20E-04 0.0249 0.382 1.04E-04 6.21E-04 7.87E-04 0.0281
Male x Graduate School 0.760 7.02E-05 2.57E-04 3.53E-04 0.0188 0.716 7.89E-05 8.85E-04 1.05E-03 0.0324 0.511 1.01E-04 6.37E-04 8.01E-04 0.0283
Female x Elementary School -0.108 3.55E-05 1.18E-04 1.65E-04 0.0129 -0.061 4.89E-05 2.66E-04 3.41E-04 0.0185 0.008 4.72E-05 8.52E-05 1.41E-04 0.0119
Female x Middle School 0.142 3.89E-05 2.29E-04 2.91E-04 0.0171 0.127 5.04E-05 2.54E-04 3.30E-04 0.0182 0.082 4.08E-05 1.00E-04 1.51E-04 0.0123
Female x High School 0.233 6.29E-05 6.11E-04 7.35E-04 0.0271 0.260 8.05E-05 2.12E-04 3.14E-04 0.0177 0.169 7.51E-05 1.55E-04 2.45E-04 0.0157
Female x Basic Vocational School 0.110 3.93E-05 1.40E-04 1.93E-04 0.0139 0.109 5.14E-05 2.61E-04 3.38E-04 0.0184 0.058 4.93E-05 6.10E-05 1.16E-04 0.0108
Female x Advanced Vocational School 0.187 6.65E-05 2.88E-04 3.83E-04 0.0196 0.199 9.28E-05 4.03E-04 5.36E-04 0.0232 0.104 7.99E-05 1.23E-04 2.15E-04 0.0147
Female x Technical College or University 0.364 8.89E-05 1.72E-04 2.78E-04 0.0167 0.361 1.05E-04 5.26E-04 6.83E-04 0.0261 0.226 1.21E-04 1.94E-04 3.34E-04 0.0183
Female x Graduate School 0.460 2.23E-04 2.52E-04 5.00E-04 0.0224 0.484 2.85E-04 8.73E-04 1.25E-03 0.0353 0.351 2.72E-04 9.32E-04 1.30E-03 0.0360

Notes: The model is a linear analysis of covariance with covariates listed in the table, unrestricted fixed person and firm effects. The dependent variable is the logarithm of annual full time, full year compensation.
Sources: Authors' calculations based on INSEE DADS, EDP, and EAE data.

COMPLETED DATA MASKED DATA SIMULATED DATA



TABLE 8: CORRELATION OF ESTIMATED EFFECTS FROM THE LOG WAGE RATE REGRESSION MODEL 

Log wage
Time-varying 
Observables

Person 
Effect

Time-invariant 
Observables

Rest of 
Person 
Effect Firm Effect Residual

AVERAGE CORRELATIONS IN COMPLETED DATA (Between-Implicate Variance Above Diagonal)

Log Real Annual Compensation 1 0.000021 0.000023 0.000079 0.000042 0.000006 0.000000
Time-Varying Obsevables 0.417 1 0.000017 0.000110 0.000022 0.000004 0.000000
Person Effect 0.517 -0.140 1 0.000087 0.000017 0.000069 0.000000
  Time-Invariant Observables 0.336 -0.146 0.383 1 0.000005 0.000011 0.000000
  Rest of Person Effect 0.430 -0.095 0.934 0.029 1 0.000096 0.000000
Firm Effect 0.258 0.042 -0.466 0.105 -0.545 1 0.000000
Residual 0.393 0.000 0.000 0.000 0.000 0.000 1

AVERAGE CORRELATIONS IN MASKED DATA (Between-Implicate Variance Above Diagonal)

Log Real Annual Compensation 1 0.000067 0.000608 0.000083 0.000344 0.000036 0.000001
Time-Varying Obsevables 0.351 1 0.000060 0.000539 0.000029 0.000048 0.000000
Person Effect 0.503 -0.172 1 0.000411 0.000062 0.001582 0.000000
  Time-Invariant Observables 0.359 -0.086 0.339 1 0.000015 0.000049 0.000000
  Rest of Person Effect 0.409 -0.153 0.944 0.011 1 0.001336 0.000000
Firm Effect 0.258 0.044 -0.510 0.105 -0.579 1 0.000000
Residual 0.402 0.000 0.000 0.000 0.000 0.000 1

AVERAGE CORRELATIONS IN SIMULATED DATA (Between-Implicate Variance Above Diagonal)

Log Real Annual Compensation 1 0.008058 0.003133 0.000524 0.001743 0.000161 0.000032
Time-Varying Obsevables 0.109 1 0.003557 0.049421 0.002011 0.000176 0.000000
Person Effect 0.479 -0.173 1 0.004107 0.000425 0.004680 0.000000
  Time-Invariant Observables 0.399 -0.153 0.380 1 0.000154 0.000130 0.000000
  Rest of Person Effect 0.369 -0.120 0.936 0.035 1 0.003206 0.000000
Firm Effect 0.202 0.030 -0.598 0.065 -0.670 1 0.000000
Residual 0.573 0.000 0.000 0.000 0.000 0.000 1

Notes: Based on statistics produced by the model summarized in Table 7.
Sources: Authors' calculations based on INSEE DADS, EDP and EAE data.



TABLE 9: SUMMARY OF COEFFICIENT ESTIMATES FOR THE ANALYSIS OF A MODEL PREDICTING FULL TIME EMPLOYMENT

PREDICTOR VARIABLE
Average 

Coefficient
Average 
Variance

Between 
Implicate 
Variance

Total 
Variance

Standard 
Error of 
Average 

Coefficient
Average 

Coefficient
Average 
Variance

Between 
Implicate 
Variance

Total 
Variance

Standard 
Error of 
Average 

Coefficient
Average 

Coefficient
Average 
Variance

Between 
Implicate 
Variance

Total 
Variance

Standard 
Error of 
Average 

Coefficient
Intercept -6.977 0.00192 0.05725 0.06489 0.255 -7.418 0.00218 0.05747 0.06539 0.256 -10.550 0.00349 0.24928 0.27771 0.527
Male 2.216 0.00251 0.00251 0.00528 0.073 1.978 0.00292 0.00828 0.01202 0.110 0.978 0.00269 0.39920 0.44181 0.665
Male x Experience -0.001 1.6755E-07 6.2557E-07 8.5567E-07 0.001 -0.002 1.9644E-07 1.3467E-06 1.6778E-06 0.001 -0.003 1.7804E-07 6.6510E-07 9.0965E-07 0.001
Male x Works in Ile-de-France -0.203 0.00011 0.00001 0.00011 0.011 -0.220 0.00011 0.00005 0.00017 0.013 -0.183 0.00011 0.00017 0.00030 0.017
Male x Elementary School 0.327 0.00019 0.00065 0.00090 0.030 0.323 0.00021 0.00128 0.00162 0.040 0.011 0.00023 0.00434 0.00500 0.071
Male x Middle School -0.236 0.00024 0.00163 0.00203 0.045 -0.202 0.00029 0.00170 0.00216 0.046 -0.101 0.00029 0.00284 0.00342 0.058
Male x High School -0.269 0.00041 0.00201 0.00262 0.051 -0.251 0.00046 0.00199 0.00266 0.052 -0.201 0.00056 0.00249 0.00330 0.057
Male x Basic Vocational School 0.253 0.00016 0.00086 0.00111 0.033 0.280 0.00017 0.00197 0.00234 0.048 0.115 0.00017 0.00292 0.00339 0.058
Male x Advanced Vocational School -0.074 0.00038 0.00112 0.00161 0.040 -0.011 0.00039 0.00157 0.00211 0.046 -0.114 0.00039 0.00177 0.00233 0.048
Male x Technical College or University -0.146 0.00075 0.00107 0.00193 0.044 -0.122 0.00096 0.00255 0.00377 0.061 -0.083 0.00121 0.00288 0.00438 0.066
Male x Graduate School -0.403 0.00085 0.00220 0.00328 0.057 -0.447 0.00084 0.00284 0.00396 0.063 -0.375 0.00104 0.00311 0.00446 0.067
Male x Engineer, Professional or Manager -0.565 0.00050 0.00036 0.00090 0.030 -0.706 0.00053 0.00026 0.00082 0.029 -0.974 0.00053 0.00990 0.01142 0.107
Male x Technical or Technical White Collar 0.362 0.00030 0.00004 0.00034 0.018 0.294 0.00032 0.00011 0.00044 0.021 0.237 0.00032 0.00312 0.00375 0.061
Male x Skilled Blue Collar 0.389 0.00020 0.00025 0.00047 0.022 0.370 0.00021 0.00038 0.00063 0.025 0.504 0.00022 0.00131 0.00166 0.041
Male x Unskilled Blue Collar 0.091 0.00020 0.00034 0.00057 0.024 0.099 0.00022 0.00036 0.00061 0.025 0.090 0.00022 0.00029 0.00054 0.023
Male x Log Real Annual Compensation 1.949 0.00006 0.00005 0.00012 0.011 2.129 0.00007 0.00017 0.00025 0.016 2.180 0.00006 0.00776 0.00860 0.093
Female x Experience -0.012 2.0232E-07 3.2116E-07 5.5560E-07 0.001 -0.011 2.3378E-07 4.6906E-07 7.4974E-07 0.001 -0.009 2.2073E-07 4.4407E-07 7.0920E-07 0.001
Female x Works in Ile-de-France -0.046 0.00012 0.00001 0.00013 0.011 -0.065 0.00013 0.00004 0.00018 0.013 0.063 0.00013 0.00008 0.00022 0.015
Female x Elementary School 0.368 0.00021 0.00065 0.00093 0.030 0.352 0.00027 0.00276 0.00331 0.058 -0.002 0.00026 0.00333 0.00392 0.063
Female x Middle School -0.038 0.00024 0.00149 0.00189 0.043 -0.006 0.00029 0.00244 0.00298 0.055 -0.032 0.00024 0.00265 0.00315 0.056
Female x High School -0.128 0.00042 0.00138 0.00194 0.044 -0.121 0.00047 0.00215 0.00283 0.053 -0.084 0.00046 0.00363 0.00445 0.067
Female x Basic Vocational School 0.239 0.00023 0.00058 0.00087 0.029 0.261 0.00028 0.00196 0.00243 0.049 -0.005 0.00027 0.00204 0.00252 0.050
Female x Advanced Vocational School 0.040 0.00040 0.00105 0.00156 0.039 0.085 0.00051 0.00409 0.00500 0.071 -0.122 0.00044 0.00359 0.00438 0.066
Female x Technical College or University -0.173 0.00063 0.00223 0.00309 0.056 -0.090 0.00067 0.00496 0.00613 0.078 -0.082 0.00080 0.00600 0.00740 0.086
Female x Graduate School -0.566 0.00151 0.00137 0.00302 0.055 -0.400 0.00167 0.00871 0.01125 0.106 -0.331 0.00164 0.00762 0.01002 0.100
Female x Engineer, Professional or Manager -0.758 0.00077 0.00019 0.00098 0.031 -0.882 0.00080 0.00074 0.00162 0.040 -0.905 0.00081 0.01085 0.01274 0.113
Female x Technical or Technical White Collar 0.182 0.00024 0.00022 0.00048 0.022 0.135 0.00025 0.00030 0.00059 0.024 0.086 0.00024 0.00053 0.00082 0.029
Female x Skilled Blue Collar 1.116 0.00034 0.00055 0.00094 0.031 1.112 0.00036 0.00058 0.00100 0.032 1.172 0.00036 0.00099 0.00145 0.038
Female x Unskilled Blue Collar 0.625 0.00014 0.00066 0.00087 0.030 0.643 0.00015 0.00073 0.00095 0.031 0.590 0.00015 0.00213 0.00250 0.050
Female x Log Real Annual Compensation 2.385 0.00010 0.00005 0.00015 0.012 2.504 0.00011 0.00026 0.00039 0.020 2.328 0.00009 0.02349 0.02592 0.161
Log Sales -0.245 0.00002 0.00190 0.00210 0.046 -0.240 0.00002 0.00188 0.00209 0.046 0.082 0.00003 0.00051 0.00059 0.024
Log Capital Stock 0.338 0.00000 0.00004 0.00004 0.007 0.330 0.00000 0.00005 0.00006 0.008 0.182 0.00001 0.00043 0.00049 0.022
Log Average Employment -0.285 0.00001 0.00287 0.00317 0.056 -0.282 0.00002 0.00294 0.00325 0.057 0.038 0.00004 0.00132 0.00149 0.039

Notes: The model was estimated with maximum likelihood logistic regression. The dependent variable is full time employment status (not full time is the reference category).
Sources: Authors' calculations based on the INSEE DADS, EDP and EAE data.
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