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Abstract

A flexible class of adaptive sampling designs is introduced for sampling in network and spatial

settings. In the designs, selections are made sequentially with a mixture distribution based on an

active set that changes as the sampling progresses, using network or spatial relationships as well as

sample values. The new designs have certain advantages compared with previously existing adaptive

and link-tracing designs, including control over sample sizes and of the proportion of effort allocated

to adaptive selections. Efficient inference involves averaging over sample paths consistent with the

minimal sufficient statistic. A Markov chain resampling method makes the inference computationally

feasible. The designs are evaluated in network and spatial settings using two empirical populations:

A hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.

Key words: Adaptive sampling, link-tracing designs, Markov chain Monte Carlo, network

sampling, Rao-Blackwell, spatial sampling.



1 Introduction

This paper introduces a flexible class of adaptive designs for sampling populations in network

and spatial settings. In a network setting, the designs are applied to sampling from a hidden

human population at risk for HIV/AIDS. Once an initial sample of people is obtained, social

links are followed to add more members of the hidden population to the sample. The decision

whether to follow a link from a specific person may depend in part on the assessed risk-related

behavior of that person. In a spatial setting, the designs are applied to a survey of migratory

waterfowl. The spatial distribution of the birds is highly uneven. Sample plots are observed

from aircraft. Whenever high abundance is observed in a sample plot, adjacent plots may be

added to the sample.

When sampling in a network, at any point in the sampling there are a certain number

of links out from the current sample. One of these can be selected, either at random or as

a function of link weight, and followed to add the next unit to the sample. More generally,

the next unit or set of units can be selected with a mixture distribution based on an active

set that changes as the sampling progresses. The network concept can be applied in spatial

and other structured settings as well, to produce adaptive designs more flexible than those

hitherto available. The designs are termed adaptive web sampling to reflect their ability to

reach weblike into interesting areas of the target population.

Because the adaptive web designs direct sampling effort disproportionately into high-

valued or otherwise interesting areas of the study population, the samples are not at face value

representative of the larger population. Unbiased or consistent estimation therefore involves

taking into account initial and conditional selection probabilities under the design. The

efficient design-based inference methods described in this paper are computationally intensive,

since their direct calculation involves consideration of every possible sample path consistent

with the minimal sufficient statistic, with different selection probabilities and estimation values
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to be computed for each path. The computations are made feasible, however, with the Markov

chain resampling method presented.

2 Sampling setup

The population of interest consists of a set of units labeled 1, 2, . . . , N . With each unit i is

associated one or more variables of interest, denoted yi. For a population in the graph or

network setting, some additional structure is required. In addition to the set of N units or

nodes and variables of interest yi associated with the ith node, there are variables of interest

wij associated with any pair of nodes i and j and describing relationships between i and j.

In many situations wij is an indicator variable, with wij = 1 if there is a link from node i

to node j, and wij = 0 otherwise. More generally, the variable wij designates a weight on

the relationship between i and j. The link variables wij determine the graph structure of

the population and, like the node variables yi, are variables of interest that are observed only

through the sample.

A sample s is a subset or subsequence of units from the population, and in the graph

setting the sample consists of both a sample s(1) of nodes, on which the node variables yi are

observed, and a sample s(2) of pairs of nodes, for which the value of the link variables wij are

observed. A design is considered adaptive if it depends on any of the variables of interest in

the sample, whether those associated with individual units or those associated with pairs of

units.

The original data do in sampling consist of the sequence of labels of the sample units, in

the order selected, together with their associated y values. In the case of with-replacement

designs, the sequence may include repeated selections of some units. The minimal sufficient

statistic on the other hand consists only of the set of labels of distinct units selected, together

with the associated y values (Godambe 1955, Basu 1969, and for adaptive designs, Thompson

2



and Seber 1996). In the graph setting, the minimal sufficient statistic consists of the reduced

data dr = {(i, yi), ((j, k), wjk); i ∈ s(1), (j, k) ∈ s(2)}, that is, the set of distinct nodes and pairs

of nodes in the sample, together with the associated node and relationship variables. Suppose

for example that node i but not node j is in s(1), so that yi is known and yj is unknown; it

could still be the case that it is known whether or not the relationship indicated by w exists

from i to j, so that the ordered pair (i, j) would be in s(2). A variable of interest such as the

out-degree wi+ =
∑

j wij of unit i, although it depends on the link variables, is considered a

node variable of interest associated with unit i.

3 Designs

An adaptive web sample is selected in steps. First, an initial sample s0 is selected by some

design p0. At the kth step after the initial sample, selection of the next part of the sample sk

depends on values associated with a current active set ak, that is, a subset or subsequence of

the sample so far selected, together with any associated variables of interest. Thus, for k ≥ 1,

the selection distribution at step k is pk(sk | ak, yak
, wak

), where ak is a subset or subsequence

of the current sample.

One way to implement such a design is to select the next unit from a mixture distribution,

so that with probability d the next unit is selected adaptively using a distribution based on

the unit values or graph structure of the active set and with probability 1 − d it is selected

conventionally using a distribution based on the sampling frame or spatial structure of the

population. For example, with probability d one of the links from the active set is selected

at random and the unit to which it connects is added to the sample, while with probability

1 − d a new unit is selected completely at random from the population or from those units

not already in the sample. The probability d may itself depend on the values in the active

set.
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The adaptive selections can be made unit-by-unit or in waves. Selection can be said to

occur in waves if the active set remains constant for several unit selections in a row, so that a

whole group of selections is based on a given active set. Snowball-type designs, for example,

typically occur in waves, with a whole set of links selected from the previous wave of units or

from all the units selected so far.

Designs in the present class have more flexibility than random walk designs by not being

confined to only one unit at a time in the active set. They are more flexible than ordinary

network, snowball, and adaptive cluster sampling designs by not requiring every link to be

followed from a particular wave, nor do connected components intersected by the sample need

to be sampled completely. This flexibility can be used to seek a balance between going deep

into the population following links for many waves or going wide with only one or a few

waves. Flexibility also comes from the conventional selection part of the mixture distribution,

which balances spreading the sample out with placing it adaptively in the promising areas.

Flexibility also comes from allocating part of the effort to the initial sample, thus controlling

how much goes into adaptive effort. The adaptive selection distribution can depend on link

values, based for example on node values from which the links originate or distance to the

connected units.

Let the current sample at step k be sck = ∪k−1
i=0 si. Let ak be the current active set at step

k. Note that ak ⊆ sck. Let nak be the number of units in the current active set ak, and let

nck be the number of units in the current sample. The next set of units sk is selected with

design probability q(sk | ak, yak
, wak

) depending on the current active set ak and its values.

For designs in waves, let sckt denote the current sample at the time for the tth unit selection

in the kth wave, so that sckt consists of the entire sample that has been selected prior to that

time. For designs in which each wave consists of a single unit, the subscript t may be omitted,

as will be done for simplicity in the estimation section following this section.
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With a nonreplacement design, the next unit or set of units is selected from the collection

of units not yet selected. In that way the selection of each unit in the sample depends on

every unit selected so far. However, the selection depends on variables of interest y or w only

through those units that are in the current active set.

At the time of the tth unit selection in the kth wave, let wakt+ be the total number of

links out, or the total of the weight values, from the active set ak to units not in the current

sample sckt. That is, wakt+ =
∑

{i∈ak,j∈s̄ckt}
wij. When w is an indicator variable, wakt+ is the

total of the net out-degrees of the individual units in the active set ak, where net out-degree

is the out-degree of a unit minus the number of its links to other units already in the current

sample.

For each unit i in the sample, the variable of interest yi and the out-degree (or out-weight)

wi+ are recorded. In addition, for each pair of units (i, j) for which both i and j are in the

sample, the values of the link variables wij and wji are observed.

Consider as a candidate for the tth selection in the kth wave a unit i not in the current

sample, so i /∈ sckt. Suppose the current active set ak contains one or more units having links

or positive weights out to unit i, and let waki =
∑

j∈ak
wij denote their total. The probability

that unit i is the next unit selected is

qkti = d
waki

wakt+

+ (1 − d)
1

(N − nsckt
)

(1)

where d is between 0 and 1. If there are no links at all out from the current active set, then

qkti =
1

(N − nckt)

Thus, with probability d, one of the links out from the current active set is selected at

random, or with probability proportional to its weight, and the node to which it leads is

added to the sample, while with probability 1− d the new sample unit is selected completely

at random from the units not already selected. However, if there are no links or positive

5



weights out from the active set to any unsampled units, then the next unit is selected from

the collection of unsampled units.

Denoting the tth unit selected in the kth wave as ikt, the kth-wave sample in the order

selected is sk = (ik1, . . . , iknk
), where nk is the size of the kth wave. The overall sample

selection probability for the ordered sample s is

p(s) = p0

K∏

k=1

nk∏

t=1

qkti (2)

where p0 is the selection probability for the initial sample and K is the number of waves.

Calculation of these sample selection probabilities is required for the design based estimators

described in the next section.

If the relationship variable w consists of weights, instead of having just 0 or 1 values, then

the link-based selection can depend on these weights. For example, link weights can be defined

in relation to the y value of an originating node or as a distance measure to the connected node,

so that links are followed with higher probability from nodes with higher values or with lower

probability to distant nodes. Then a link from the active set can be selected with probability

proportional to link weight, or with some other selection probability p(i | sckt, ak, yak
, wak

)

depending on variables of interest only through the active set. For example, a link out could

be selected at random from the links with wij greater than some constant, or yi greater than

some constant. The selection probability when links are not followed does not have to be

uniform over the units not in the current sample, but can be a more general design p(i | sckt)

such as selecting with probability related to an auxiliary variable or from a spatially defined

distribution.

In the more general context with w representing a possibly continuous link weight variable,

the probability that unit i is the next unit selected is

qkti = d p(i | sckt, ak, yak
, wak

) + (1 − d) p(i | sckt)
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If there are no links or positive weights from ak to i, then

qkti = p(i | sckt).

Once unit i has been selected, it is possible to add an accept/reject step for deciding whether

to include it in the active set, for example, accepting with higher probability if unit i has a

high value or high degree.

The constant d itself can also be replaced by a probability d( k, t, ak, yak
, wak

) depending on

values related to nodes and links in the active set or changing as sample selection progresses.

For example, if the values of the units in ak are particularly high, we could increase the

probability of following links. As for dependence of d on (k, t), the use of an initial conventional

sample of size n0 > 1 may be viewed as serving to obtain some information from basic coverage

of the population before adaptive sampling is allowed to commence. In principle, one could

instead increase d continuously as sampling progresses in order to increase the probability of

adaptive sampling as information about the population increases.

The full design may consist of a single adaptive web sample as described above, or of m

independently selected samples.

Each of the adaptive web designs described in this paper can also be carried out with

replacement. In that case, at each point in the sampling, with probability d a link is selected

at random or from some distribution depending on node and link values without regard to

whether the unit it leads to has already been selected or not. With probability 1− d the next

unit is selected at random or by another distribution, not depending on node or link values,

from the entire set of N units in the population.

For a with-replacement design let wak+ =
∑

{i∈ak,j=1,...,N} wij, so that the relevant total

of links from the active set includes even links to units in the current sample. With random

or weighted selection of links with probability d and random selection from the population

at large with probability 1 − d, the probability that unit i is the next selection, regardless of
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whether i has already been selected or not, in the simple with-replacement case is

qkti = d
waki

wak+

+ (1 − d)
1

N

if there are links or positive weights from the active set to i and

qkti =
1

N

if there are not.

4 Estimation

For the without-replacement designs, several types of design-unbiased estimators of the pop-

ulation mean are described, with modifications for with-replacement designs given later. For

any design let s denote the sample in the original order selected, and let s denote the set of

distinct units in the sample. Let r be the reduction function that reduces any sequence s to

the set s of its distinct elements, so that r(s) = s. For a without-replacement design, the

only reduction that takes place is the elimination of order-of-selection information, while for

a with-replacement design information about numbers of times a unit is selected is eliminated

as well. For the estimators in this paper the values of link variables between units in the

sample are assumed known, as is the out-degree of each sample unit. The minimal sufficient

statistic can then be written dr = {(i, yi, wi+, wij); i ∈ s, j ∈ s}.

4.1 Estimator based on initial sample mean

Suppose a single initial sample unit is selected with probability π0 and has value y0. Then

µ̂01 = (1/N)y0/π0 is an unbiased estimator of the population mean. More generally, with

initial sample size n0 ≥ 1, let µ̂01 be an unbiased estimator of the population mean based on

the initial sample design, such as the Horvitz-Thompson estimator µ̂01 = (1/N)
∑

i∈s0
yi/πi
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or, for an initial simple random sample, µ̂01 = ȳ0. (Note that the notation p0 of the previous

section refers potentially to the selection of a whole set of initial units, while πi is used

exclusively for the inclusion probability of a single unit.)

A conceptually simple but computationally intense estimator of the population mean is

obtained via the Rao-Blackwell approach, finding the conditional expectation of the prelimi-

nary estimator given the minimal sufficient statistic. The relevant conditional distribution is

given by p(s | dr) = p(s)/[
∑

{s:r(s)=s} p(s)]. The improved estimator is

µ̂1 = E(µ̂01|dr) =
∑

{s:r(s)=s}

µ̂01(s)p(s | dr)

The improved estimator µ̂1 is the expected value of the initial estimator over all n! reorderings

of the sample data. For some designs, for example those with an initial random sample of

size n0, the preliminary estimator has the same value over reordering of the initial n0 units,

so that the expected value is over
(

n

n0

)
combinations and (n−n0)! reorderings. In calculating

the expectation, each of the reorderings is weighted by the selection probability (2). This

estimator is unbiased for 0 ≤ d ≤ 1.

4.2 Estimator based on conditional selection probabilities

Another unbiased estimator can be obtained by dividing observed values by conditional se-

lection probabilities depending on the step by step active sets. Des Raj (1956) and Murthy

(1957) considered designs in which the selection probability depended on the set, though not

the order, of the units already selected. For some of the active set designs, such as those

in which the active set consists of the most recently selected units, these probabilities can

depend on order of selection as well as the set of units already selected. In addition, the con-

ditional selection probabilities may depend on the y and w values associated with the active

sets. Further, since the initial sample may be selected by a different procedure, a composite

estimator is needed.
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With an initial sample of n0 units, let τ̂s0
be an unbiased estimator of the population total

τ =
∑N

i=1 yi based on the initial sample s0. Thus, if the initial sample is selected by simple

random sampling, without replacement, τ̂s0
= (N/n)

∑
i∈s0

yi = Nȳ0, while with an initial

unequal probability design, τ̂s0
=
∑

i∈s0
yi/πi could be used. For selections after the initial

sample, conditional selection probabilities are utilized. Thus for the ith selection, having value

yi and at which point the current sample is sck = (s0, . . . , sk−1), let zi =
∑

j∈sck
yj + yi/qki.

Note that each zi is an unbiased estimator of τ . An unbiased estimator of the population

mean is

µ̂02 =
1

Nn

[
n0τ̂s0

+
n∑

i=n0+1

zi

]

This estimator is a weighted average of the initial sample estimator τ̂s0
and the average of the

n − n0 subsequent conditional estimators, zi.

This estimator is unbiased for 0 ≤ d < 1. If d = 1, then, unless the population graph is

complete, this estimator is not unbiased because not all of the conditional selection probabil-

ities will be strictly greater than zero at each step for every unit not in the current sample.

Since the initial estimator depends on order of selection, applying the Rao-Blackwell

method produces the second improved unbiased estimator

µ̂2 = E(µ̂02|dr) =
∑

{s:r(s)=s}

µ̂02(s)p(s | dr)

The expectation is again carried out over every sample path of nodes consistent with the

sufficient data and using the sequence selection probabilities under the design.

4.3 Composite conditional generalized ratio estimator

Let N̂0 be an estimator of the population size N based on the initial sampling design used

to select the first n0 units. For example, if the initial design is an unequal probability one
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and the initial estimator τ̂0 is a Horvitz-Thompson estimator τ̂0 =
∑

k∈s0
yk/πk, then N̂0 =

∑
k∈s0

(1/πk).

For i = n0 + 1, . . . , n, define N̂i = #sck + 1/qki, where #sck is the size of the current

sample. Note that just as zi is an unbiased estimator of τ , N̂i is an unbiased estimator

of N . A composite estimator of N combining the initial and subsequent samples is N̂ =

(1/n)[n0N̂0 +
∑n

i=n0+1 N̂i]. A generalized ratio estimator is then formed as the ratio of the

two conditional probability-based estimators

µ̂03 =
Nµ̂02

N̂

Although the estimator µ̂03 is not precisely unbiased, conditioning on the minimal sufficient

statistic produces an improved estimator having the same expected value (hence the same

bias) with mean square error as small or smaller than the preliminary estimator:

µ̂3 = E(µ̂03|dr) =
∑

{s:r(s)=s}

µ̂03(s)p(s | dr)

4.4 Composite conditional mean-of-ratios estimator

An alternate way to use the ratios of unbiased estimators in a composite estimator is

µ̂04 =
1

n

[
n0

τ̂s0

N̂0

+
n∑

i=n0+1

zi

N̂i

]

The improved version of this estimator is

µ̂4 = E(µ̂04|dr) =
∑

{s:r(s)=s}

µ̂04(s)p(s | dr)

None of the estimators µ̂1, µ̂2, µ̂3, or µ̂4 gives uniformly lower mean square errors than the

others, since the minimal sufficient statistic in finite population design-based sampling is not

complete. The estimator µ̂2 though unbiased can produce large values with certain samples

having small conditional selection probabilities. With a population in which the y values of
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the units are 0-1 valued so that the population mean is a proportion, the estimator µ̂2, even

though unbiased, can produce estimates of the population proportion greater than one, that

is, outside the range of possible values. The alternative estimators µ̂3 and µ̂4, though not

unbiased, do produce estimates strictly between 0 and 1 for such populations.

4.5 Variance estimators

For an estimator µ̂ = E(µ̂0 | dr), the conditional decomposition of variances gives var(µ̂) =

var(µ̂0)−E[var(µ̂0 | dr)]. An unbiased estimator of this variance is v̂ar(µ̂) = E[v̂ar(µ̂0) | dr]−

var(µ̂0 | dr). The first term is the expectation of the initial sample variances over all re-

orderings of the data, while the second term is the variance of the initial estimator over the

reorderings.

For the first estimator, with the initial sample a random sample without replacement of n0

units, then the variance estimator of the initial sample mean is v̂ar(µ̂01) = (N −n0)v0/(Nn0),

where v0 is the sample variance of the initial sample.

For the second estimator, with n0 = 1 and initial estimator µ̂02 =
∑n

i=1 zi/(Nn), the

variance estimator v̂ar(µ̂02) =
∑n

i=1(zi − Nµ̂0)
2/(n(n − 1)N 2) can be shown to be unbiased

for var(µ̂02), following Des Raj (1956) and Murthy (1957), the useful fact being the zis are

uncorrelated though not independent. Thus v̂ar(µ̂2) = E[v̂ar(µ̂02) | dr] − var(µ̂02 | dr) is an

unbiased estimator of the variance of µ̂2.

With the second estimator and an initial sample with n0 > 1, let v1 be an unbiased

estimator of var(µ̂s0
), where µ̂s0

= τ̂s0
/N , and let v2 =

∑n

i=n0+1(zi − z̄2)
2/[(n − n0)(n − n0 −

1)N 2], where z̄2 =
∑n

i=n0+1 zi/(n−n0). When s0 is a simple random sample with n0 > 1 then

v1 = (N − n0)v0/(Nn0). An unbiased estimator of the variance of µ̂02 is the composite

v̂ar(µ̂02) =
(n0

n

)2

v1 +

(
n − n0

n

)2

v2

and an unbiased estimator of the variance of var(µ2) is the difference v̂ar(µ̂2) = E[v̂ar(µ̂02) | dr]−
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var(µ̂02 | dr).

Variance estimators of this type, although unbiased, have the disadvantage that they can

give negative estimates with some samples. An alternative approach that avoids this difficulty,

and is therefore recommended, is to select more than one adaptive web sample independently.

Let m be the number of independent adaptive web samples, and let µ̂k be the estimate of a

population quantity with the kth adaptive web sample. Then an unbiased estimate of µ is

µ̂ =
∑m

k=1 µ̂k/m and an unbiased estimate of the variance of µ̂ is

v̂ar(µ̂) =
m∑

i=1

(µ̂k − µ̂)2/[m(m − 1)]

This procedure provides unbiased, invariably positive estimates of variance for any of the

estimators.

4.6 Estimators for with-replacement designs

With a with-replacement adaptive web design, the initial sample still provides an unbiased

estimator of the population mean or total, and the form of µ̂01 would remain the same. For

the estimator µ̂02 the component variables become zk =
∑

i∈sck
yk/qki. For µ̂03 and µ̂04, the

unbiased estimators of N are N̂k = 1/qki.

For the Rao-Blackwell improvements of each of these estimators, the collection of samples

consistent with the minimal sufficient statistic include not only reorderings of the original

data, but also recombinations in which repeat selections of different units still give the same

set of distinct units.

5 Markov chain resampling estimators

Computation of the estimators µ̂1 and µ̂2 and their variance estimators under various adaptive

web designs involves in general tabulating the reorderings of the sample selection sequence.
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For each reordering, the probability of that ordering under the design is computed, along

with the values of the estimators and variance estimators. Direct calculation is very efficient

up to sample sizes of ten or so, involving no more than a few million permutations to be

enumerated. For larger sample sizes, the numbers of permutations or combinations of potential

selection sequences in the conditional sample space become prohibitively large for the exact,

enumerative calculation. For this reason, a resampling approach is utilized as a general

method for obtaining estimates with designs of these types.

Each of the estimators involves the mean of a function over a conditional distribution.

Let x represent a point in the conditional sample space. In this context, x is typically a

permutation of the n units selected for the sample and the sample space consists of all possible

permutations. The estimator µ̂ = E(µ̂0 | dr) can be written µ̂ =
∑

x µ̂(x)p(x | d) where x is a

point in the sample space, p(x | dr) is the probability of selecting x with the given sampling

design conditional on the realized value dr of the minimal sufficient statistic, and the sum

is over all points in the sample space. One way to obtain a sample sr of permutations x

from the conditional distribution p(x | dr) is through a Markov chain accept/reject procedure

(Hastings, 1970).

The resampling procedure used to obtain estimators in the examples in this paper when

sample sizes precluded enumerative calculation is as follows. The object is to obtain a Markov

chain x0, x1, x2, . . . having stationary distribution p(x | d). Suppose that at step k − 1 the

value is xk−1 = j, so that j denotes the current permutation of the sample data in the

chain. A tentative permutation tk is produced by applying the original sampling design, with

sample size n, to the data as if the sample comprised the whole population, that is, as if

N = n. This resampling distribution, denoted pt differs from, but has some similarity to, the

actual sampling design p. The desired conditional distribution p(x | dr) is proportional to the

unconditional distribution p(x) under the original design applied to the whole population.
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Let α = min{[p(tk)/p(xk−1)][pt(xk−1)/pt(tk)], 1}. With probability α, tk is accepted and

xk = tk, while with probability 1 − α, tk is rejected and xk = xk−1.

This procedure produces a Markov chain x0, x1, x2, . . . having the desired stationary distri-

bution p(x | dr). The chain is started with the original sample s in the order actually selected.

Given any value of the minimal sufficient statistic dr, the chain is thus started in its stationary

distribution and so remains in its stationary distribution step by step.

Suppose that nr resampled permutations are selected by this process and let µ̂0j denote

the value of the initial estimator for the jth permutation. An enumerative estimator of the

form µ̂ = E(µ̂0) is replaced by the resampling estimator

µ̃ =
1

nr

nr−1∑

j=0

µ̂0j

Similarly,

Ẽ[v̂ar(µ̂0) | d] =
1

nr

nr−1∑

j=0

v̂ar(µ̂0j)

and

ṽar(µ̂0 | d) =
1

nr

nr−1∑

j=0

(µ̂0j − µ̃)2

To estimate the additional variance var(µ̃ | d), due to resampling, one approach is to divide

the Markov chain resampling data into L groups of length K each and use the sample variance

of the block means as suggested by Hastings (1970):

s2
ȳ =

L∑

i=1

(ȳi − µ̂)2 /[L(L − 1)]

For the examples motivating this work the expense of resampling, which involves only

computation, is small compared to the expense of actual sampling, the recommended approach

is to use large resample sizes to make the additional resampling variance negligible.
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6 Empirical examples

6.1 HIV/AIDS at-risk population

Figure 1 (top) shows drug-using relationships among at-risk individuals from the Colorado

Springs study on the heterosexual transmission of HIV/AIDS (Potterat et al. 1993, Rothen-

berg et al. 1995, Darrow et al. 1999). The nodes represent people in the study population,

with a solid circle indicating an injection drug user. Links shown represent drug-using rela-

tionships between individuals. With hidden human populations of this type, it is generally

much more difficult or expensive to select nodes at random or by a conventional probability

design than to find new units by following links from units already in the sample.

Simulations of sampling from this population were carried out with a variety of adaptive

web designs. The data set used has 595 people and is used as an empirical population from

which to sample. Injection drug use was used as the variable of interest and the proportion

of injection drug users was the population quantity to be estimated from each sample. Rep-

resentative properties of the strategies with this population are summerized by the sampling

distributions shown in Figure 2. In each case, 4 independent adaptive web samples were

selected, each having an initial sample size of 10 and a final sample size of 20, for a total

sample size of 80. The initial samples were selected by simple random sampling. The proba-

bility d of following links was 0.9. A sample of this type from the population is shown in the

lower portion of Figure 1. In Figure 2 the selection of links was at random from those in the

active set. Similar results were obtained with a slightly different design, in which links were

followed with probability proportional to originating node value, which meant that links were

only followed from nodes with y = 1, corresponding to high-risk individuals. The number of

simulation runs for each design was 2000, and the number of resamples for each of the 2000

samples was 10,000. The estimators having lowest mean square error were µ̂4 and µ̂1 for both
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designs, though µ̂4 showed slightly increased bias with the design having weighted selection

of links.

Degree distributions, giving the frequency of nodes having each degree value, are of con-

siderable interest in social network analysis and epidemiology. The degree distribution for

the Colorado Springs empirical distribution is given in the upper left of Figure 3. The same

distribution is shown with logarithmic scales in the upper right. The approximately linear

section in the middle range of the scaled distribution indicated a power-law distribution could

be used to approximate the degree distribution in that range. The lower left of the figure gives

the degree distribution for adaptive web samples of size 20 from the population, with initial

random samples of size 10 and random selection of links. The sample degree distribution

has a lower frequency of nodes with small degree and a higher frequency of nodes with high

degree. The skewness of the sample degree distribution compared to that of the population

is especially evident with the rescaled distribution at the lower right.

The sampling distribution of the sample mean degree is shown on the lower left in Figure

3, based on 2000 samples selected with the adaptive web design, each sample consisting of

m = 4 independent selections having initial sample sizes n0 = 10 and final size n = 20, so

that each sample contains 80 units in all. Whereas the mean degree in the population is 2.5,

the expected value of the sample mean degree is 5.5. In contrast to the highly biased sample

degree statistic, an unbiased estimate of the degree of the population network is provided

by either of the estimators µ̂1 or µ̂2 with node degree as the variable of interest yi. The

sampling distribution of the unbiased estimator µ̂1 applied to the degree data, with the same

2000 samples, is shown on the lower right in Figure 3. With the design selecting links with

probability proportional to the degree of the originating node, the results were very similar

and are not shown.
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6.2 Wintering waterfowl population

Figure 4 depicts the spatial distribution of a population of blue-winged teal, a migratory

waterfowl species, on a wildlife refuge (Smith, Conroy, and Brakhage 1995). The study

area has been divided into 50 units or plots, and counts of birds are given for each plot in

the population. The variable of interest for each unit is the number of birds in it and the

population quantity to be estimated is the total number of birds in the empirical population.

The directed graph structure of the population in relation to adaptive sampling is shown at

the bottom of the figure.

In each simulation run, an initial simple random sample of n0 units was selected, for

different values of n0. In subsequent selections links were selected at random with probability

d = 0.9, while with probability 1 − d = 0.1 a unit was selected at random from those not

already in the sample. Total sample size was fixed at n = 20. The design variation in which

links were selected with probability proportional to the y value of the originating node was

also evaluated, with similar results. The number of simulation runs for each strategy was

2000, and the number of resamples for each of the 2000 samples was 10,000. The gains from

improving the initial estimators with Markov chain resampling were substantial.

The issue of how much of the sample to allocate to the random initial selection and how

much to the adaptive part is examined in Figure 5. Mean square errors in the figure are

standardized by dividing by that of a simple random sample of 20 units, corresponding to

the choice n0 = 20. The pattern illustrates a trade-off between focusing on areas near to

high encountered values and exploring the study region more widely. A very small random

starting sample (n0 < 5) gives little information overall, so that it would be better to explore

more widely than to focus. Once a larger initial random sample has been obtained it is more

valuable to focus effort in promising areas. Of the values tried, the lowest mean square errors

were obtained in the vicinity of n0 = 13 or n0 = 14, depending on the estimator. Thus,
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with this population, optimal efficiency was achieved when the initial sample size was 65 to

70 percent of the total sample size, so that by selecting 30-35 percent of the sample units

adaptively, a 75 percent gain in efficiency is gained over conventional random sampling with

the same sample size. Comparing with the tables in Smith, Brown, and Lo (1995), this design

is also somewhat more efficient than the adaptive cluster design having a random sample size

with expected final sample size approximately 20.

Different sample allocations with the blue-winged teal population are illustrated in Figure

6, showing two samples each having sample size n = 20 and random selections of links. The

sample at the top of the figure has n0 = 13 and the sample at the bottom has n0 = 1.

Visually, the first sample has better coverage of the study region overall, while still providing

some focused exploration of the aggregation areas.

7 Discussion

The new designs have a number of advantages relative to previously available adaptive and

link-tracing strategies, as well as providing efficiency gains in some situations over conven-

tional sampling with the same sample size. In comparison with ordinary adaptive cluster

sampling (Thompson 1990, Thompson and Seber 1996) and with some types of network or

multiplicity sampling (Birnbaum and Sirken 1965), one advantage of the present designs is

that no connected component is required to be sampled completely. Relative to some of the

standard snowball designs in graphs (Frank 1977a,b, 1978a,b, 1979, Frank and Snijders 1994),

an advantage of the present designs is that sample size can be fixed in advance, and depth

versus width of penetration into the population can be adjusted. Similarly in adaptive cluster

sampling much of the literature has been devoted to containing, even approximately, the ran-

dom sample size (e.g., Salehi and Seber 1997, Brown and Manley 1998, Christman and Lan

2001, Su and Quinn 2003, and extensive review in Smith et al. 2004), whereas with the present
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designs sample size can be fixed exactly. In addition, the allocation between conventional and

adaptive sampling efforts can be adjusted as desired. Design-unbiased estimation in adaptive

cluster sampling requires that a fixed condition for extra sampling in a neighborhood be fixed

in advance, whereas in the present designs the probability of an adaptive selection can depend

on a continuous function of sample unit or link values, giving for example higher probability

to following a link from a high-valued unit than from a low-valued unit. In contrast to some

of the standard methods for network and snowball designs, the strategies discussed in this

paper are applicable in directed graph as well as undirected graph situations. Whereas with

random walk designs in graphs (Klovdahl 1989, Lovász 1993) selection of the next unit can

depend only on the most recently selected unit, the active set of the new designs can take

many forms such as the most recent several selections, the whole current sample, or a set of

units close in geographic or graph distance to the current selection.

In relation to optimal model-based sampling strategies (Zacks 1969, Chao and Thompson

1999), which can roughly be characterized as adaptively placing new units in proximity to

high-valued or “interesting” observations while at the same time striving to spread them out

to cover the study region, the proposed designs, while not optimal under any one model,

approximate some of the characteristics of optimal strategies while being much simpler to

implement and avoiding the dependence on model-based assumptions.

Further study of the choices of initial sample size n0 and link-tracing probability d would

be useful. In the last empirical example of this paper, the optimal choice allocated 65 to 70

percent of the total sample size to the initial sample. If d is set to one, so that there is no

possibility of a random jump unless one is stuck with no network links to follow from the

current active set, then µ̂1 still provides an unbiased estimator while µ̂2 is no longer unbiased.

Choices of d less than one and of n0 greater than one keep the sampling from getting stuck

in a single large network component. As d approaches zero the design becomes more like a
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conventional one. The choice of n0 and d reflects the tension between the desire to select each

unit from the most promising area in light of the current data and the desire to have wide,

representative coverage of the population. More generally, the value of d could depend on the

current sample, for example increasing from zero toward one as sample size increases.
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Figure 1: Top: HIV/AIDS at-risk population (Potterat et al. 1993). Dark node indicates

injection drug use. Links indicate drug-using relationships. Largest component contains 300

of the 595 individuals. Bottom: Adaptive web sample of 80 nodes and corresponding sample

network structure from the population above, with n0 = 10, n = 20, m = 4, d = 0.9, random

selection of links.
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Figure 2: Sampling distributions of estimators of population mean node value for HIV/AIDS

at-risk population. Adaptive web design with total sample size 80, n0 = 10, n = 20, m = 4,

d = 0.9, random selection of links. Based on selection of 2000 samples, 10,000 resamples from

each subsample. Population mean=0.5748. The four rows correspond to the four types of

estimators presented. Histograms for the preliminary estimators are on the left, while those

for the improved estimators are on the right.
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Figure 3: Population (top) and sample (middle) degree distributions for HIV/AIDS at-risk

population, natural (left) and logarithmic (right) scales. Distribution of sample mean degree

(bottom left) and of unbiased estimator µ̂1 for mean degree (bottom right).
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Figure 4: Blue-winged teal population spatial count data (Smith et al. 1995) and population

graph structure.
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Figure 5: Mean square errors of estimators of population mean for different sample sizes

n0, with total sample size 20, blue-winged teal population. Adaptive web design used had

d = 0.9, random selection of links from current sample. Mean square errors are standardized

by dividing by that for a random sample of 20 units without replacement.
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Figure 6: Two types of sample allocations from the blue-winged teal population. Both samples

have a total size of 20 and use random selection of links. The first has an initial sample size

of 13, while the second has an initial sample size of 1 unit, proceeding adaptively from there.

The first design was more efficient than the second.
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