First Homework Assignment for Math 408 and 708

Due: Wednesday, September 24th, in class.
All references are to the Wolsey text.
Problems for Math 408 and 708:

1. Chapter 1, problem 1.
2. Formulate the Maximum Set Packing problem as an integer program. This is the problem of finding the largest family of disjoint sets from a given collection of sets \mathcal{C}.
3. Chapter 1, problem 4. Note that $B=\{0,1\}$.
4. Chapter 1, problem 7.
5. A magic square is an arrangement of the numbers $1,2, \ldots, n^{2}$ in an $n \times n$ box such that each row, column and diagonal has a constant sum. Formulate as an integer program the problem of finding a magic square maximizing the sum of the entries in its four corners.

Problems mainly for Math 708:
6. Chapter 1, problem 10.
7. Show that the integer program:

$$
\max \quad x-\sqrt{2} y \quad \text { such that }\{x \leq \sqrt{2} y, \quad x \geq 1, \quad x, y \text { integer }\}
$$

has feasible solutions with objective value arbitrarily close to zero, but no optimal solution.
8. Consider the problem of allocating storage (memory) dynamically in a computer. Model the memory as a simple array indexed by the positive integers. Suppose we are given a series of n requests to use an array of size s_{i} from arrival time r_{i} to departure time d_{i}. We would like to find the minimum memory size that will accommodate these requests (and a way to do it). Formulate this problem as an integer program.

Reading:
Chapters 1 and 2.

