Reminder

The midterm will take place in class on Friday, February 4th.

Reading

For Wednesday, Section 9.2.
For Monday, February 7th, Section 9.3.
For Wednesday, February 9th, Section 10.1.
For Friday, February 11th, Section 10.2.

Assignment questions

Section 9.1: 1, 2.

Section 9.2: 1, 2, 3.

Instructor questions:

1. Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of non-negative integers and $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ the corresponding generating function. Express in terms of $A(x)$ the generating function $B(x)$ of each of the following sequences of non-negative integers. For each part, justify your answer. Note that the formula for $B(x)$ should not contain a summation symbol or an infinite sum; it has to be a closed form involving a finite number of terms, although your justification can use summations.
(a) $0,0,0, a_{3}, a_{4}, a_{5}, \ldots$
(b) $0,0,0,0, a_{0}, a_{1}, a_{2}, \ldots$.
(c) $a_{0}, 0, a_{2}, 0, a_{4}, 0, a_{6}, \ldots$
(d) $a_{0}, 2 a_{1}, 4 a_{2}, 8 a_{3}, 16 a_{4}, \ldots$ (i.e. the sequence $\left.\left(2^{n} a_{n}\right)_{n \geq 0}\right)$.
(e) $a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, a_{0}+a_{1}+a_{2}+a_{3}, \ldots$ (i.e. the sequence $\left.\left(\sum_{i=0}^{n} a_{n}\right)_{n \geq 0}\right)$.
2. Suppose that $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and that $A(x) \frac{1}{1-x}=B(x)$. Give an expression for b_{n}, in terms of $a_{0}, a_{1}, \ldots, a_{n}$. Justify your answer.
3. We now investigate the generating function of Fibonacci numbers F_{n}, defined by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ if $n \geq 2$. The first Fibonacci numbers are $0,1,1,2,3,5,8,13,21, \ldots$. Based on the definition of F_{n}, prove that the generating function of these numbers

$$
F(x)=\sum_{n \geq 0} F_{n} x^{n}
$$

satisfies the following identity:

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

Some other questions worth trying

Note that there are supplementary exercises at the end of each chapter, these may in some cases make good review questions for the midterm.

