Remarks

The quiz that was scheduled for Friday, March 25th will now take place on Monday, March 28th.

Reading

For Monday, March 28th, Section 12.2.
For Wednesday, March 30th, Section 12.3.
For Friday, April 1st, Section 12.4.

Assignment questions

Section 11.5: 10, 12, 18.
Section 11.6: 4, 6 a), 7, 8.
Section 12.1: 8, 12.

Instructor questions:

1. Let G be a graph such that $\max _{v \in V(G)} \operatorname{deg}(v)=k$. By induction on the number of vertices of G, show that G has a proper coloring that uses at most $k+1$ colors.
2. Prove that if a graph has at most m vertices of degree at most n and all other vertices have degree at most k, with $k<n$ and $m<n$, then the graph is colorable with $m+k+1$ colors.
3. In the field of DNA sequencing, a major problem is the following: you are given a set of k DNA strings, S_{1}, \ldots, S_{k}, (strings on the alphabet $\{A, C, G, T\}$) that are all substrings of a larger string S. Let G be the graph defined as follows: $V(G)=\left\{S_{1}, \ldots, S_{k}\right\}$ and $E(G)$ is such that $\{i, j\} \in E(G)$ if and only if a prefix of S_{j} is a suffix of S_{i} (i.e. the beginning of S_{j} is equal to the end of S_{i}) or reciprocally.
If $k=8$ and $S_{1} \ldots S_{8}=\{A T G, A G G, T G C, T C C, G T C, G G T, G C A, C A G\}$, find a string S such that every letter of S belongs to at least one of these strings ?

Some other questions worth trying

Section 11.5: 7.
Section 11.6: 1, 3.
Section 12.1: 1, 3.

