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Synoptic Abstract

This paper considers the Bayesian analysis of dyadic data with particular emphasis on applica-

tions in social psychology. Various existing models are extended and unified under a class of

models where a single value is elicited to complete the prior specification. Certain situations

which have sometimes been problematic (e.g. incomplete data, non-standard covariates, missing

data, unbalanced data) are easily handled under the proposed class of Bayesian models. In-

ference is straightforward using software that is based on Markov chain Monte Carlo methods.

Examples are provided which highlight the variety of data sets that can be entertained and the

ease in which they can now be analyzed.

Key words: Bayesian analysis, incomplete data, Markov chain Monte Carlo, missing data, social

relations model, WinBUGS.

1 Introduction

Many social psychologists study perceptions, interpersonal attractions and other types of social

relations amongst people. Because individuals are at the same time producers of behavior and

social stimuli, studies involve multiple interactions amongst subjects. For example, in a group

study, subjects rate other subjects with respect to a set of social traits giving rise to a summary

score. Each subject in the group plays the dual role of an “actor” (rater or responder) and a

“partner” (target or stimulus) which produces bivariate (dyadic) data. Often more than one trait

is measured giving rise to multivariate measurements, but in this paper we restrict our attention

to the analysis of univariate data. In the analysis of dyadic interactions, the actor, the partner,

and actor-partner interaction must be considered. The analysis of dyadic behavior thus examines

these three fundamental sources of variation: actor variance, partner variance and relationship

variance (Kenny, Mohr & Levesque 2001).

There is a rich history of the methods of analysis for such data. The first formal statistical

model was introduced by Lev & Kinder (1957). Warner, Kenny & Stoto (1979) realized that
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because data from dyadic studies are interdependent, they proposed a random-effects model

that was later generalized and called the social relations model (SRM) by David Kenny and his

associates (Kenny 1994). The SRM has traditionally been analyzed using analysis of variance

(ANOVA) methods. Wong (1982) proposed a maximum likelihood (ML) method as an alternative

to ANOVA. Snijders & Kenny (1999) used a multilevel approach for the analysis of the SRM; the

multilevel approach has been successful in dealing with incomplete and unbalanced data. Recent

advances in the statistical methods for continuous dyadic data have been made by Gill & Swartz

(2001) and Li & Loken (2002) who discussed ANOVA, ML and Bayesian inference. Hoff (2005)

generalized the methodology to Bayesian analysis of generalized linear models and third-order

dependence patterns among dyadic data.

In this paper, we continue the work of Gill and Swartz (2001) and present Bayesian methods

for the analysis of dyadic studies as used in social psychology studies. A Bayesian analysis of the

SRM using Markov chain Monte Carlo (MCMC) methods has certain advantages over ANOVA,

ML and multilevel approaches. Whereas ML and multilevel approaches are based on asymptotic

inference, the exact posterior distributions of parameters (and their functions) can be estimated

by MCMC methods. Inference from Monte Carlo sampled posterior distributions is appropriate

even for studies with few subjects having infrequent interactions. There is therefore no need for

complicated procedures such as bootstrap F-tests as used in ANOVA approaches (Kenny 1994).

We also note that the Bayesian approach easily handles missing and incomplete data problems.

Finally, one can imagine situations in which it is desirable to incorporate prior information; this

is a necessary component of Bayesian analyses.

There are various goals associated with this paper. The primary goal is to open the world

of dyadic modelling to potential users by presenting the ease in which complex models can be

analyzed using a Bayesian approach. The vehicle for doing this is modern Bayesian computation

made accessible in the software package WinBUGS (Spiegelhalter, D., Thomas, A. & Best, N. 2003)

which is freely available from the web site www.mrc-bsu.cam.ac.uk/bugs. The software allows

even unsophisticated users to entertain complex Bayesian models. Our paper presents the SRM,
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its Bayesian counterpart and demonstrates how the Bayesian model can be modified to suit the

peculiarities of particular data sets. Thus, as a secondary goal, the paper provides a unification

of social relations models and admits analyses that have not been previously considered. We

show how covariates can be introduced and how the models corresponding to block designs are

variations of the Bayesian model. Furthermore, we show how the missing and incomplete data

problem, a very serious and common problem in social psychology, can be easily managed. The

implementation of WinBUGS software, the consideration of covariates, longitudinal models, block

models, missing and incomplete data represent extensions to the initial Bayesian modelling of

Gill and Swartz (2001).

In section 2, we review the traditional social relations model, describe the Bayesian social

relations model (BSRM) and discuss practical issues including parameter interpretation, prior

specification, the posterior distribution, inference and model selection. In the following sections,

we describe how to modify the BSRM to suit particular data sets. In section 3, we discuss the

inclusion of covariates, a longitudinal model, the missing and incomplete data problem, and the

treatment of specialized block designs. We provide some concluding remarks in section 4.

2 Bayesian Modelling

2.1 The Social Relations Model

The SRM involves paired observations yijk and yjik. Here yijk represents the response of subject

i as an actor towards subject j as a partner on the kth occasion, k = 1, . . . , nij, i �= j. In yjik, the

roles are reversed. We let m denote the number of subjects and note that incomplete designs (i.e.

some nij = 0) and unbalanced designs (i.e. some nij unequal) cause no difficulty in the subsequent

Bayesian analysis. We restrict our attention to the situation where the response is measured on

a continuous scale, at least approximately. For example, subjects are asked to respond to a

number of questions on a Likert scale with response values falling in a discrete interval (say 1 to
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5). The responses from various questions are then summed to create an approximate continuous

scale where normality is suggested. In cases where the responses are of a binary nature (e. g.

Yes/No), the setup is called a social network. The Bayesian modelling of social network data are

considered by Gill and Swartz (2004).

For continuous data, the model expresses the paired responses in an additive fashion

yijk = µ+ αi + βj + γij + εijk

yjik = µ+ αj + βi + γji + εjik (1)

where µ is the overall mean, αi is the effect of subject i as an actor, βj is the effect of subject

j as a partner, γij is an interaction effect representing the special adjustment which subject i

makes for subject j and εijk represents the error term which picks up measurement error and/or

variability in behavior on different occasions. Note that the expected responses E(yijk) and

E(yjik) differ as the actor and partner have different parameters. We refer to µ, the α’s, the β’s

and the γ’s as first-order parameters and note that there are m2 +m + 1 such parameters and
∑
i �=j nij observations. Thus, even in the simple structure (1) where relatively few observations

are available to identify parameters, a Bayesian approach suggests itself.

The SRM goes on to assume that the overall mean µ is fixed but that the other terms in (1)

are random. Specifically, it is assumed that

E(αi) = E(βj) = E(γij) = E(εijk) = 0

var(αi) = σ2α, var(βj) = σ2β , var(γij) = σ2γ, var(εijk) = σ2ε

corr(αi, βi) = ραβ, corr(γij, γji) = ργγ, corr(εijk, εjik) = ρεε (2)

and all other covariances are zero. The parameters {σ2α, σ
2
β, σ

2
γ, σ

2
ε, ραβ , ργγ , ρεε} are called the

variance-covariance parameters (or components). As the subjects are a sample from a population,

the variance-covariance population parameters are of primary interest. These parameters model

the variability and co-variability of social/psychological phenomena in a population of human
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subjects. In the subsequent sections, we discuss two examples where data were gathered from

university dormitories and from families.

The interpretation of the variance-covariance parameters is naturally problem specific. How-

ever, for the sake of illustration, suppose that the response yijk is the measurement of how much

subject i likes subject j based on their kth meeting. In this case, ραβ represents the correlation

between αi and βi, i = 1, . . . ,m, and we would typically expect a positive value. That is, an in-

dividual’s positive (negative) attitude towards others is usually reciprocated. The interpretation

of ργγ is typically more subtle. In this example, a positive value of ργγ may be interpreted as the

existence of a special kind of “sympatico” when two individuals hit it off and vice-versa. In the

social psychology literature, this is referred to as dyadic reciprocity (Kenny 1994).

2.2 The Bayesian Social Relations Model

When developing the Bayesian analogue BSRM, we maintain the first and second moment as-

sumptions as in (2), but go further by assigning distributional forms to the parameters. Specifi-

cally, let µij = µ + αi + βj + γij and assume conditionally



αi

βi



 ∼ Normal2








0

0



 ,Σαβ



 ,




γij

γji



 ∼ Normal2








0

0



 ,Σγ



 ,






yijk

yjik




 ∼ Normal2











µij

µji




 ,Σε






where k = 1, . . . , nij , 1 ≤ i �= j ≤ m and

Σαβ =




σ2α ραβσασβ

ραβσασβ σ2β



 ,

Σγ = σ2γ






1 ργγ

ργγ 1




 ,
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Σε = σ2ε






1 ρεε

ρεε 1




 .

Up to this point, the Bayesian model has not introduced any new parameters. However, it is

sensible to express our uncertainty in the variance-covariance parameters and to also regard µ as

random. Therefore, following conventional Bayesian protocol for linear models (Gelfand, Hills,

Racine-Poon & Smith 1990), we assume

µ ∼ Normal[θµ, σ
2
µ], θµ ∼ Normal[θ0, σ

2
θ0], σ−2µ ∼ Gamma[a0, b0], Σ

−1
αβ ∼Wishart2[(ν0R)

−1, ν0]

(3)

where X ∼ Gamma[a, b] implies E(X) = a/b.

The parameters subscripted with a 0 in (3) are referred to as hyperparameters and are often

set to give diffuse prior distributions for the parameters θµ, σ
2
µ and Σαβ . Diffuse distributions are

useful when a user does not have strong prior opinions regarding parameters. In the applications

that we have studied, we have used θ0 = 0, σθ0 = 10000, a0 = 0.0001, b0 = 0.0001 and ν0 = 2.

These choices are robust in the sense that inferences do not change dramatically when the values

are perturbed. With respect to Σαβ, we let R = r0I. Unlike Σαβ , the prior assumptions on

Σγ and Σε are atypical due to the necessity of equal diagonal entries. For Σγ, we assume

ργγ ∼ Uniform[−1, 1] and we assume σ−2γ ∼ Gamma[3, 2r0] which provides a diffuse distribution

for σ2γ. The appeal of the chosen Gamma hyperparameters lies in the fact that E(σ2γ) = r0 and

Stddev(σ2γ) = r0 which we believe is sensible for the applications discussed in the paper. A similar

prior structure is imposed on Σε. Therefore, with the determination of the hyperparameter r0, the

BSRM is completely specified. Except for the prior distributions on σ2ε and σ2γ , this is the same

model as proposed by Gill and Swartz (2001). The proposed prior on σ2γ may be seen as more

standard than the Exponential distribution proposed in Gill and Swartz (2001). It is possible

to simplify the Bayesian model by limiting the hierachical structure through the specification of

hyperparameters (e.g. θµ, σ
2
µ).

To determine r0, we observe that E(σ2α) = E(σ2β) ≈ E(σ2ε) = E(σ2γ) = r0 which suggests
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a commonality of magnitude amongst the various effects. Therefore the user need only think

about the design of the experiment and possible values one might expect concerning σ2α (for

example). We recommend that the user run the software with a range of values for r0 to check

the sensitivity of the results. We remark that we have experimented with alternatives to the

Wishart distribution (e.g. independent diffuse Gamma priors for σ−2α and σ−2β ) and obtained

similar results. When the user feels that the common prior distributions for the variances are

unreasonable, it is a simple matter to allow distinct hyperparameters for the individual priors.

Having specified the Bayesian model, the model assumptions and data induce a posterior

distribution in accordance with the Bayesian paradigm. The posterior distribution is the distrib-

ution of the parameters conditional on the data and is the fixture from which inference proceeds.

There are m2 +m+ 10 parameters in the BSRM and thus the posterior distribution is complex

and difficult to study in its full functional form. Typically however, an experimenter is interested

solely in the average value and spread of some of the parameters. Therefore, if we are able to

repeatedly generate a parameter, say σ2α, from the posterior distribution, average it and calcu-

late its sample standard deviation, we will then have obtained estimates of the desired posterior

mean and posterior standard deviation respectively. The methods of Markov chain Monte Carlo

(Gilks, Richardson & Spiegelhalter 1996) provide an iterative approach to variate generation

from posterior distributions.

In general, the implementation of MCMC in Bayesian applications is not always straight-

forward. The user first needs to determine a particular Markov chain which has the posterior

distribution as the invariant (i.e equilibrium) distribution. Second, the user needs programming

expertise as it is often necessary to generate variables from non-standard distributions. Fortu-

nately, WinBUGS is a high level software package that avoids these difficulties and allows even

unsophisticated users to entertain the BSRM. The user need only supply the data and provide

the model specification. Details relating to the Markov chain are performed in the background.

The user deals only with the output from the Markov chain after making sure that the chain

has achieved practical convergence. WinBUGS has built-in graphical and analytical capabilities
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to check convergence. Therefore, in the BSRM, a primary focus is on model specification. As an

example of the benefits of WinBUGS, suppose that your are attempting to code a Gibbs sampler

for the basic BSRM given by (1) and the prior assumptions. In this case, it can be shown that

the full conditional distribution of Σε has a density which is proportional to

|Σε|
− 1

2

∑

i<j

nij

Iρε(−1, 1) exp





−
1

2

∑

i<j

nij∑

k=1






yijk − µij

yjik − µij






T

Σ−1ε






yijk − µij

yjik − µij










σ8ε exp(−2r0σ

2
ε)

where I is the indicator function. The full conditional distribution of Σε is non-standard and it

is not clear to us how one could sample directly from this distribution. Fortunately, WinBUGS

works in the background and determines a suitable proposal density for the implementation of

the Metropolis algorithm.

As another practical concern, the output from a Markov chain is correlated. To counteract

this, a simple strategy involves thinning the output of the Markov chain by choosing every tth

variate. The value t is typically chosen by looking at the autocorrelation plots of the output

and noting that the autocorrelation structure weakens for increasing values of t. In the examples

considered in this paper, we did not observe any problematic autocorrelations.

2.3 Model Selection

A popular method for model selection is to use the predictive performance criterion proposed by

Laud & Ibrahim (1995). Given a finite number of candidate models, the criterion is based on the

predictive performance of a model in terms of its ability to predict a replicate of the data. Let

ypred denote a replicate of the observed data vector yobs. The posterior predictive distribution of

ypred under model M is

f (M)(ypred| yobs) =
∫

f(ypred| η
(M )) f(η(M)| yobs) dη

(M ) (4)

where η(M) denotes all the parameters under model M ,f (η(M )| yobs) is the posterior density and

f(ypred| η(M)) is the density of the predicted (or future) value. The model selection criterion,
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called the expected predictive deviance (EPD), chooses the model M with the smallest value of

E(M)[d(ypred, yobs)| yobs]

where d(ypred, yobs) is a discrepancy function and the expectation is with respect to the predictive

distribution (4). For continuous data, a common discrepancy function is d(ypred, yobs) = || ypred−

yobs||
2where ||x||2 denotes the sum of squares of elements of the vector x. It is straightforward to

estimate EPD as a part of MCMC sampling. In each loop of an MCMC run, the vector ypred is

generated as a Gaussian variate according to the assumed model, simulating a value of d(ypred,

yobs). The sample mean of these d(ypred, yobs) values is then used to estimate EPD.

We remark that Bayesian model selection is a different problem than testing the fit of a

particular Bayesian model. The latter is a more difficult problem for which there is no consensus

in the literature. Dey, Gelfand, Swartz and Vlachos (1998) discuss the difficulties of testing fit

for Bayesian models and provide a simulation approach in the context of hierarchical models.

3 Extended Modeling

3.1 Models with Covariates

The general social relations model allows for an occasion-specific mean effect, occasion-specific

actor effects, occasion-specific partner effects and occasion-specific interaction effects. In other

words, the parameters µ, αi, βj and γij, i ≤ i �= j ≤ m are allowed to be further subscripted with

the index k. The BSRM can be modified to include these possibilities as well as the addition of

covariates of interest. To illustrate, consider the following modification of expression (1)

yijk = µ + αi + βj + γij + δ sexij + εijk

yjik = µ + αj + βi + γji + δ sexij + εjik. (5)

In (5), we have added the sexij term to test the common relationship hypothesis that members

of the opposite sex interact differently than members of the same sex. We let sexij = 1 if subjects
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i and j are of the same sex, and when subjects i and j are of the opposite sex, we let sexij = 0.

Thus the existence of the relationship hypothesis translates to rejecting δ = 0. In (5), further

prior assumptions also need to be made and we construct them in the same spirit as the prior

assumptions in the BSRM. For example, we assume δ ∼ Normal[θδ, σ
2
δ ] with θδ ∼ Normal[θ0, σ

2
θ0]

and σ−2δ ∼ Gamma[a0, b0]. One may also introduce the unstable mean term µk in (5), with

µk ∼ Normal[θµk, σ2µ] and θµk ∼ Normal[θ0, σ2θ0] and σ−2µ ∼ Gamma[a0, b0], which may be useful in

detecting a temporal trend. For example, participants may tire over an experiment k = 1, . . . , nij

and their ratings may change monotonically.

A more elaborate extension is the model where all or some of the variance-covariance para-

meters {σ2α, σ
2
β, σ

2
γ, σ

2
ε, ραβ , ργγ, ρεε} are group-specific. For example, one may be interested in

knowing if males differ more than do females, that is, whether σ2Mα is larger than σ2Fα. Similar

hypotheses for the other parameters can be formulated and tested.

3.2 Longitudinal Models

Reciprocity in the degree of attraction between persons is a fundamental principle that has

been the subject of psychological theories such as cognitive-consistency theory, balance theory

(Newcomb 1961, 1979, Kenny & La Voie 1982). Psychologists are interested in studying the

evolution of interpersonal attraction in new acquaintances. As the relationship between persons

develops, the reciprocity should increase over time. To test such a plausible hypothesis, one

needs empirical evidence from a longitudinal study that monitors the evolution of interpersonal

relations among complete strangers. A round robin design was used by Newcomb (1961) in his

classic study of attraction. In their replication of Newcomb’s study, Curry & Emerson (1970)

conducted a study on previously unacquainted students who lived together in a residence-hall at

the University of Washington. In total there were six 8-person round robin groups. The subjects

in each group stated their attraction toward their group members on a 100-point scale at weeks

1, 2, 4, 6, and 8. The eight subjects in each group were further divided into 4 subgroups of two
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roommates. Additional details about the design and data collection are provided in Curry &

Emerson (1970). This study provides an opportunity to test the BSRM analysis for a large data

set with parallel round robin clusters and temporal effects.

Let ygijk denote the response at the kth occasion (k = 1, ..., 5) of the ith subject as an actor

where the jth subject is the partner and both subjects are members of the gth group, g = 1, ..., 6.

Let roomgij = 1 (0) indicate that subjects i and j in group g are (are not) roommates. We propose

the following BSRM for dyadic attraction scores ygijk and ygjik

ygijk = µk + αgik + βgjk + δk roomgij + γgijk

ygjik = µk + αgjk + βgik + δk roomgij + γgjik

This model postulates that the occasion specific average level of attraction µk and roommate

effect δk are the same for all roommate pairs but are occasion specific. Note that in this highly

parametrized model, the interaction effect γgijk plays the dual role as the error term. We have

490 first-order parameters expressed via µk, αgik, βgjk, and δk.

The evolution of the social network structure in each residence-hall may effect the subjects.

Therefore, the actor-partner covariance matrix Σαβ is modelled as occasion specific. The dyadic

covariance matrix Σγ is modelled as occasion specific because we are interested in modelling the

longitudinal nature of the dyadic relationship and of the reciprocity therein. This leads us to the

following formulation: µk ∼ Normal(µ, σ2µ), δk ∼ Normal(δ, σ2δ) and




αgik

βgik



 ∼ Normal2








0

0



 ,Σkαβ



 , Σkαβ =




σ2kα ρkαβσkασkβ

ρkαβσkασkβ σ2kβ



 ,






γgijk

γgjik




 ∼ Normal2











0

0




 ,Σkγ




 , Σkγ = σ2kγ






1 ρkγγ

ρkγγ 1






where the distributions of hyper parameters are direct analogue of the BSRM.

Recall that the prior structure requires the specification of a single hyperparameter r0. A

reasonable value of r0 is based on the consideration of the mean of ygijk. Since the sample mean

12



of ygijk is 78.1 and the upper value of measurements is 100.0, it is likely that 3 standard deviations

of any of the effects α, β or γ should be less than or equal to 100.0− 78.1 = 21.9. For example,

3σα ≤ 21.9, and since E(σ2α) ≈ r0, we set r0 = (21.9/3)2 ≈ 50. Therefore, an experimenter can

use the structure of the experiment to determine the prior value r0.

In Table 1, we provide some summary results of the analysis. We observe that the most

dramatic changes in attraction occur in the early weeks of the study, most notably between week

1 and week 2. Interestingly, roommates tend to not like each other as much as the time goes on.

There seems to be no temporal effect on the actor and partner variances, and surprisingly, the

correlation ραβ disappears after the first week. The dyadic variance σ2γ decreases with time, and

as expected, the dyadic reciprocity ργγ increases with time. We emphasize that an advantage of

a Bayesian analysis based on Markov chains is that there is nearly unlimited freedom in the type

of summaries that can be displayed. It would be possible, for example, to produce a histogram

or kernel density plot corresponding to any parameter of interest. In doing so, skewness may be

readily revealed.

We remark that the posterior inferences are robust to the specification of the value of r0 (e.g.

r0 = 20.0, 40.0, . . . , 100.0). This is expected as the sample size is large and the data overwhelms

the prior opinion.

We have assumed in the above model that our data are normally distributed. To test the data

model for normality, we use a standard residual approach. We take the model (1) and subtract

the parameter estimates (posterior means) from the y’s. This leaves us with residuals (although

correlated as in any residual analysis). We standardize the residuals by dividing each residual by

the posterior mean of its standard deviation. Figure 1 shows a histogram and normal quantile

plot on the standardized residuals. Apart from slight skewness, the assumption of normality

seems adequate.
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Table 1: Posterior means and 95% credible intervals (in parentheses) for the

Bayesian social relations model analysis of the attraction data

Parameter Week 1 Week 2 Week 4

General mean µk 75.2 (69.1,78.8) 77.4 (74.7,79.9) 78.0 (75.5,81.0)

Roommate effect δk 8.9 (6.4,13.8) 8.4 (6.2,10.9) 8.2 (5.9,10.5)

Actor variance σ2kα 86.7 (44.1,151.5) 56.7 (29.8,96.4) 57.8 (28.3,102.3)

Partner variance σ2kβ 73.7 (36.2,127.7) 68.4 (37.5,113.8) 58.4 (28.6,103.6)

Actor-Partner correlation ρkαβ 0.46 (0.08,0.74) 0.15 (-0.22,0.48) 0.08 (-0.31,0.45)

Dyadic variance σ2kγ 207.2 (171.1,250.3) 125.6 (104.5,151.8) 148.4 (123.2,180.0)

Dyadic correlation ρkγγ 0.30 (0.13,0.45) 0.36 (0.21,0.50) 0.40 (0.26,0.54)

Table 1 contd...

Parameter Week 6 Week 8

General mean µk 78.0 (75.5,81.0) 77.9 (75.4,81.0)

Roommate effect δk 8.1 (5.5,10.1) 8.0 (5.3,10.0)

Actor variance σ2kα 51.7 (25.9,90.1) 70.3 (39.3,119.1)

Partner variance σ2kβ 89.7 (51.0,149.0) 86.6 (50.0,141.8)

Actor-Partner correlation ρkαβ -0.15 (-0.52,0.23) 0.0 (-0.36,0.34)

Dyadic variance σ2kγ 144.7 (120.6,173.8) 124.0 (102.4,150.7)

Dyadic correlation ρkγγ 0.31 (0.15,0.46) 0.48 (0.33,0.60)

3.3 Missing and Incomplete Data

Up until this point we have implicitly assumed that nij = nji so that paired responses are

obtained as outlined in (1). However, in experiments in social psychology, this assumption may

not be realistic. Often, human research subjects rate one another, and sometimes, they rate one
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Figure 1: Histogram and normal qualtile plot for standardized residuals for the attraction data

another at follow-up sessions. This introduces the possibility that they may not all show up. At

such follow-up sessions, all of the original participants can still function as partners to be rated

even though some are not present to provide ratings as actors. We assume that missing data

are missing at random in the sense that the probability of a missing response is independent of

the characteristics of the individuals involved. Data can also be incomplete when groups are of

different sizes.

The Bayesian approach has an elegant way of handling missing and incomplete data. Let

[A | B] denote the conditional density of A given B and denote the full data by y = (yobs, yunobs)

where yobs and yunobs are the observed data and the unobserved data respectively. Then in

general, letting η denote the vector of all model parameters, the posterior density is given by

[η | yobs] ∝
∫
[yunobs, yobs | η] [η] dyunobs

where [yunobs, yobs | η] [η] is the regular unnormalized posterior density that one would obtain if

yunobs were actually observed. Thus, using a Markov chain Monte Carlo approach, one simply
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simulates as before except that yunobs takes the role of a random parameter rather than a fixed

data value. In a Gibbs sampler (Gilks, Richardson & Spiegelhalter 1996), the generation of

yunobs from its full conditional distributions involves simple generations from univariate normal

distributions for the BSRM.

To handle missing and incomplete data in the BSRM using WinBUGS, we need only code the

unobserved data values with the NA symbol. We emphasize that this is incredibly easy to do as

opposed to ANOVA and ML based inference. This is demonstrated in the following section.

3.4 Block Models

A block design refers to a study in which subjects are divided into subgroups and each person

then rates everyone else in the other subgroup. In studies involving a large number of subjects,

it may be too expensive to carry out a round robin experiment. Therefore, a block design

would be a workable compromise. Block designs are also suitable for situations where a natural

factor (such as sex) is the basis for subgrouping. For example, heterosexual subjects would rate

only the opposite sex subjects with respect to physical attractiveness. As BSRM can handle

unbalanced and incomplete data, block designs can easily be analyzed as we illustrate in the

following example.

This example deals with a complex data set reported by Gerlsma (1993) and Gerlsma, Sni-

jders, Van Duijn & Emmelkamp (1997) as a part of a study of parental rearing styles. Each parent

reported on the level of emotional warmth toward each of two children, and each child reported

on the warmth from each parent towards that child. The warmth score was calculated based on

the responses to nine items in a questionnaire. The study reported data from 60 families with 30

“complete” families each with four members, and other 30 families with less than four members.

For some families, data were missing because some members did not provide their response for

some of the relatives in the family. The subjects form two groups (or blocks consisting of parents

and children) nested within families. A statistical model should also take into account the special
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roles of subjects as father, mother, first child and second child.

Snijders & Kenny (1999) recognized that ANOVA based analysis is not adequate to handle the

complexity of family data structure and proposed the use of the multilevel approach. They used

specially written macros for the software MLn and MLwiN (Goldstein, Rasbash, Plewis, Draper,

Browne, Yang, Woodhouse & Healy 1998).

Let ygij denote the response of the ith subject as an actor when the jth subject is the part-

ner, both subjects being members of the gth family, g = 1, ..., 60. We further fix the notation

to indicate the special role of the subjects in the family. The subscript values i = 1, 2, respec-

tively, refer to father and mother, and subscript values j = 3, 4, respectively, indicate the first

child and the second child. Therefore, a family of two parents and two children produces eight

observations yg13, yg31, yg14, yg41, yg23, yg32, yg24, and yg42. For families with fewer than 4 members

and for families with missing data, some of these 8 observations are unavailable. We postulate

the following BSRM with family, actor, partner and relationship effects

ygij = µg + αgi + βgj + γgij

ygji = µg + αgj + βgi + γgji.

In this formulation, we have role-specific distributions for the actor and partner effects of

the subjects. In describing the means and covariance matrices of the prior distributions, the

subscripts F , M , C1 and C2, respectively refer to father, mother, first child, and second child;

and the subscripts A and P refer to actor effect and partner effect, respectively. The family effect

µg is assumed to have a prior distribution µg ∼ Normal(θµ, σ2µ). That is, we envision that the

families used in the study come from a population of families with mean emotional warmth score

θµ and σ2µ measures the between families variability of the emotional warmth score. The actor,

partner and relationship effects are modelled with prior distributions as follows:






αg1

βg1




 ∼ Normal2











θFA

θFP




 ,ΣF




 ,ΣF =






σ2Fα ρFαβσFασFβ

ρFαβσFασFβ σ2Fβ




 ,
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




αg2

βg2




 ∼ Normal2











θMA

θMP




 ,ΣM




 ,ΣM =






σ2Mα ρMαβσMασMβ

ρMαβσMασMβ σ2Mβ




 ,




αg3

βg3



 ∼ Normal2








θC1A

θC2P



 ,ΣC1



 ,ΣC1 =




σ2C1α ρC1αβσC1ασC1β

ρC1αβσC1ασC1β σ2C1β



 ,




αg4

βg4



 ∼ Normal2








θC2A

θC2P



 ,ΣC2



 ,ΣC2 =




σ2C2α ρC2αβσC2ασC2β

ρC2αβσC2ασC2β σ2C2β



 ,




γgij

γgji



 ∼ Normal2








0

0



 ,Σγ



 , Σγ = σ2γ




1 ργγ

ργγ 1



 .

The role-specific covariance parameters measure the variation between the families and various

roles can be compared. The formulation allows various comparisons, such as,

1. comparison of fathers’ and mothers’ average warmth towards their children, θMA − θFA,

2. comparison of children’s perceived warmth from their parents and their parents’ recollection

of the same, 0.5(θMA + θFA − θC1A− θC2A),

3. comparison of first child’s and second child’s average perceived warmth from their parents,

θC1A− θC2A.

Table 2 shows posterior means and 95% credible intervals for some key parameters and con-

trasts obtained from a Bayesian analysis with r0 = 9. This value of r0 was obtained using an

argument similar to that used in section 3.2. The analysis was repeated with r0 = 2 and r0 = 20

and the results were similar. We observe that mothers reported higher emotional warmth than

fathers (a mean value of 2.4 for θMA− θFA) and this was confirmed by the children’s recollection

(a mean value of 2.5 for θMP −θFP ). Relative to the second children, the first children reported a

slightly lower level of warmth (mean difference θC1A− θC2A = −0.67) from their parents but the

parents did not report any difference (mean difference θC1P− θC2P = 0.08 and the 95% credible

interval goes from -0.4 to 0.6). Overall, the children’s mean reported warmth levels were not

different than the parent’s mean reported warmth levels.
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Looking at the variance-covariance parameters, we find that the families don’t differ much

from one-another. The largest variance component is the father as a partner with a mean value

of 32.1 as opposed to the mean value of 4.21 for the mother as a partner variance. That is, as

perceived by their children, fathers varied much more than the mothers in showing emotional

warmth. Interestingly, this was also verified by the parents’ recollection as we observe a mean

value of 19.4 for father as an actor variance and a mean value of 7.9 for mother as an actor

variance. First children as actors variance is higher than the corresponding value for the second

children indicating more variability in the perceived perception of warmth by the first children.

A moderate positive value for father actor-partner correlation (mean = 0.50) indicates that

fathers had a reasonable re-collection of the warmth towards their children, whereas the mother

actor-partner correlation is low with a mean value of 0.17. A relatively small value for the

dyadic variance σ2γ (mean = 5.0) indicates that actor and partner effects were dominant in the

recollection of warmth. The overall conclusions are very similar to those reported by Snijders &

Kenny (1999).

To illustrate model selection, we compare four sub-models. Table 3 shows the estimated EPD

values. We see that model 2 which assumes equal actor-partner covariance matrices for the two

children is as good as the full model 1. Models 3, 4 and 5 are inferior as all of these submodels

impose equality between the parent specific covariance matrices.

We performed a residual analysis for the normality assessement for the family data. A his-

togram and a normal quantile plot are shown in Figure 2. Linearity of the quantile plot gives us

an assurance that the normality assumption is not seriously violated.
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Table 2: Posterior means and 95% credible intervals (in parentheses) for the family data

Parameter

General Mean θµ 29.4 (28.6,30.1)

Mother-father difference as actors θMA − θFA 2.4 (1.6,3.4)

Mother-father difference as partners θMP − θFP 2.5 (1.7,3.4)

First-second child difference as actors θC1A− θC2A -0.67 (-1.37,0.04)

First-second child difference as partners θC1P− θC2P 0.08 (-0.40,0.57)

Parents-children difference 0.5(θMA + θFA − θC1A− θC2A) -0.09 (-0.84,0.66)

Family variance σ2µ 0.10 (1.0E-4,0.84)

Father as actor variance σ2Fα 19.4 (10.7,32.4)

Father as partner variance σ2Fβ 36.4 (20.5,59.7)

Father actor-partner correlation ρFαβ 0.50 (0.15,0.76)

Mother as actor variance σ2Mα 7.9 (4.1,13.8)

Mother as partner variance σ2Mβ 6.7 (3.0,12.6)

Mother actor-partner correlation ρMαβ 0.17 (-0.30,0.57)

First child as actor variance σ2C1α 12.6 (6.0,22.4)

First child as partner variance σ2C1β 5.0 (2.4,9.4)

First child actor-partner correlation ρC1αβ 0.02 (-0.44,0.47)

Second child as actor variance σ2C2α 8.7 (4.0,16.3)

Second child as partner variance σ2C2β 4.9 (2.3,8.9)

Second child actor-partner correlation ρC2αβ 0.04 (-0.43,0.50)

Dyadic variance σ2γ 5.0 (3.8,6.5)

Dyadic correlation ργγ 0.17 (-0.10,0.43)
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Figure 2: Histogram and normal qualtile plot for standardized residuals for the family data

Table 3: Model comparison for family data

Model EPD

1: ΣF �= ΣM , ΣC1 �= ΣC2 4780

2: ΣF �= ΣM , ΣC1 = ΣC2 4814

3: ΣF = ΣM , ΣC1 �= ΣC2 4932

4: ΣF = ΣM , ΣC1 = ΣC2 4933

5: ΣF = ΣM = ΣC1 = ΣC2 5801

4 Discussion

We have proposed a Bayesian analogue of social relations model of Kenny (1994) for the analysis

of dyadic data which arise in social psychology studies. Classical methods, as discussed in Kenny

(1994) and in other social psychology literature, are based on ANOVA formulation. ANOVA
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based methodology is known to have some limitations such as lack of exact inference and its

inability to deal with unbalanced designs and missing/incomplete data. We have tried to argue

that the Bayesian modelling is feasible and affordable using a freely available software package

called WinBUGS. This software allows a user to explore complex models for the analysis of dyadic

data.
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