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ABSTRACT

This paper develops an approach to testing the adequacy of both classical and
Bayesian models given sample data. An important feature of the approach
is that we are able to test the practical scientific hypothesis of whether the
true underlying model is close to some hypothesized model. The notion of
closeness is based on measurement precision and requires the introduction of
a metric for which we consider the Kolmogorov distance. The approach is
nonparametric in the sense that the model under the alternative hypothesis is

a Dirichlet process.

1. INTRODUCTION

Although Bayesian applications have seen unprecedented growth in the
last 10 years, there is no consensus on the correct approach to Bayesian model
checking. A selection of diverse approaches that address Bayesian model check-
ing includes Guttman (1967), Guttman, Dutter and Freeman (1978), Chaloner
and Brant (1988), Weiss (1994), Gelman, Meng and Stern (1996), Verdinelli
and Wasserman (1996), Albert and Chib (1997), Evans (1997), Hodges (1998)
and Dey, Gelfand, Swartz and Vlachos (1998).



In classical model checking, informal methods are based on the inspection
of graphical displays such as residual plots. Formal methods, which often go
by the name “goodness-of-fit” rely on a p-value and involve the test of a null
hypothesis without the specification of an alternative hypothesis. To many,
goodness-of-fit methods are appealing since the space of alternative hypotheses
is rarely known. In principle, Bayesian testing cannot mimic the classical
goodness-of-fit approach since Bayesian methods require the specification of
an alternative hypothesis and the associated prior. D’Agostino and Stephens
(1986) is a comprehensive source for classical goodness-of-fit techniques.

The classical goodness-of-fit approach considers null hypotheses such as
“Hy : the underlying model is normal”. It is widely accepted that such hy-
potheses are rarely true, and that given a large enough sample, one will obtain
a sufficiently small p-value to reject the null hypothesis. In this case, what
most experimenters really want to assess is the actual scientific hypothesis of
whether the underlying model is close to normal. Thus there is a major gap
between the classical goodness-of-fit approach and what experimenters really
want to test.

In this paper we develop a systematic approach to model checking that is
in the spirit of classical goodness-of-fit (i.e. avoids formulating a parametric
alternative hypothesis) yet addresses the actual scientific hypothesis of interest
(i.e. closeness). Our approach is fully Bayesian but is applicable to both clas-
sical and Bayesian models. The main tool in our methodology is the Dirichlet
process which puts us in the nonparametric Bayesian framework and implic-
itly assigns an alternative hypothesis. The notion of closeness requires the
introduction of a metric for which we consider the Kolmogorov distance. Our
approach then is straightforward: Based on sample data, the theory of the
Dirichlet process provides the posterior of the true underlying model. Using
the Kolmogorov metric, we calculate the posterior distance of the true un-
derlying model from the hypothesized model. Inference is then based on the
posterior distribution of the Kolmogorov distance. The methods are highly
computational.

The idea of assessing closeness to a null hypothesis has previously been
explored by Evans, Gilula and Guttman (1993) in the analysis of Goodman’s
RC model. It has also been investigated by Evans, Gilula, Guttman and Swartz



(1997) in tests of stochastic order for contingency tables.

Our nonparametric goodness-of-fit approach requires the user-specification
of a single parameter m. Although “most Bayesians rely on the subjectivist
foundations articulated by De Finetti and Savage” (Kass and Wasserman,
1996), few are willing and able to go through the pains of prior elicitation. In
this paper, 2 reasonable questions are asked of the experimenter to elicit the
required prior opinion. For a review of the current state of prior elicitation,
see Kadane and Wolfson (1998).

Sections 2 through 4 deal with classical models based on univariate sample
data. In Section 2, we develop a test for the Bernoulli model which does
not require the use of the Dirichlet process. This test is instructional for the
more general tests that follow. We also include a discussion of prior selection.
Section 3 develops a test for precise hypotheses with arbitrary support and
provides further discussion on prior selection. Of particular importance in
Section 3 is the reduction of all continuous precise tests to a test of uniformity
via the probability integral transformation. Tests of composite hypotheses are
considered in Section 4. The natural extension to Bayesian models is presented
in Section 5 along with a generalization to the case of multivariate sample data.

Some concluding remarks are then given in Section 6.

2. A TEST FOR THE BERNOULLI MODEL

To fix ideas we illustrate the approach in the simplest context before moving
on to more general problems. Here we test the adequacy of a hypothesized
Bernoulli model. More formally, we test Hy : P = I where P is the true
underlying distribution and F' is the hypothesized Bernoulli(y) distribution.
The observed sample is @1, ..., 1, where P(X; =1) =60 and P(X;, =0)=1-46
for ¢ = 1,...,n. The data are summarized by y = >_" ; x; ~ Binomial(n, §).

The parameter space is one-dimensional and we assign a Beta(a(1), «(0))
prior on 6 where a(0) > 0 and a(l) > 0 are specified. The Beta family is
a special case of the Dirichlet family used in Sections 3, 4 and 5. Routine

calculations give the posterior distribution

0|x1, ..., 2, ~ Beta(y + a(l1),n —y + a(0)).



The metric d = [0 — 6] is used to assess the distance between the true
underlying distribution and the hypothesized distribution. It follows that the

posterior distribution function of the metric d is given by

min(Loot+e) T'(q 4 b) _
P(d < €ltr, ... x0) = /mx(%_e) w w1 — w)tldu (1)
where a = y+a(l),b=n—y+ «a(0) and 0 < € < max(fy, 1 —bp). The integral
in (1) is known as a truncated beta and is readily evaluated.

Inference is based on the posterior distribution of d which is the synthesis of
prior information and the observed data concerning d. Note that the posterior
distribution displays results over the range of distances 0 < € < max(fy, 1 —6y)
and is therefore more informative than goodness-of-fit procedures that rely on
a single number summary. Although distribution functions are intrinsic to
probability measures, statisticians are generally more experienced and com-
fortable when viewing probability density functions. For this reason, we plot
the posterior density when studying the posterior distribution of d. When
appropriate, we also calculate posterior and prior probabilities that d < ¢ for
various e.

When specifying the prior parameters o(1) and «(0), we take the position
that testing of Hy : P = F'is only done when we have some prior view that P is
in the vicinity of F'. We therefore take a(1) = mby and a(0) = m(1 — 6y) such
that E(P) = F. This leaves us with only the specification of the prior mass m.
From a subjective Bayesian point of view we specify ¢* and 0 < ¢ < 1 such that
the subjective prior probability P(d < €*) = ¢. Letting ¢* represent the value
of the metric d = |6 — 0| describing practical equivalence of P to F', it then
follows that the equation P(d < €*) = .5 represents “ignorance” concerning the
hypothesis of practical equivalence. For example, a pharmaceutical company
may only report success rates in round percentages (e.g. values such as 76%,
83%, etc.). In this case, prior indifference concerning practical equivalence of
the underlying model to the hypothesized Bernoulli(fy) model involves setting
€* = .005. From a robust perspective, the experimenter may wish to elicit a
range of probabilities ¢ for a given €*. Ideas such as these have been used by
Swartz (1993) to obtain subjective priors for the Dirichlet process.

Given fy, € and ¢, our problem of specifying the prior therefore reduces to



solving for m in the equation

umé’o—l(l _ u)m(l—é’o)—ldu = (2)

/min(l,@o—l—e*) F(m)
max(0,0g—€*) F(m@o)F(m(l — 00))

As the left hand side of (2) is an increasing function of m, the equation is
easily solved via bisection. Note that a solution does not exist for sufficiently

large values of €*.

Example 1. Consider the test of whether a coin is fair (6 = 1/2) and
suppose that we observe y = 28 heads in n = 40 flips of the coin. In this
example, we are apriori indifferent to the closeness of 6 to 0y = 1/2 as defined
by accuracy in the first digit of §. We therefore take ¢ = .5, ¢ = .05 and
obtain the prior mass m = 45.76. Figure 1 gives the posterior density of d.
Whereas the standard two-tailed test based on the normal approximation to
the Binomial gives a p-value of .018 and rejects the null hypothesis, Figure 1
is less conclusive. For example, the posterior probability that d < €* is .202
where d < €* corresponds to the null hypothesis of practical equivalence (i.e.
A5 < 6 < .55). To check the sensitivity of the prior specification m, the prior
probability, posterior probability and Bayes factor corresponding to d < €* are
calculated for various values of m and reported in Table I. As expected, the
prior and posterior probabilities increase as m increases. However, the Bayes
factor defined as the ratio of the prior odds to posterior odds is relatively
constant as it falls in the range from 2.0 to 6.0. According to Jeffreys (1961),

such values do not provide strong evidence against the null hypothesis.

Table 1

Prior, posterior and Bayes factor corresponding to d < € in Example 1.

m | Prior | Posterior | Bayes factor
1| .064 .026 2.56
10 | .243 053 5.75
20 | .342 .090 5.24
50 | 519 221 3.81
100 | .683 425 2.92
200 | .843 .692 2.40
500 | .974 948 2.13




3. TESTS OF PRECISE HYPOTHESES

We now consider the precise hypothesis Hy : P = F where P is the
true underlying distribution and F' is some specified continuous distribution.
D’Agostino and Stephens (1986) refer to this as the Case 0 situation. We
assume that the support for both P and F'is R and that the data consist of
a sample zq,..., 2z, from P. Our approach is the same as in Section 2: We
introduce a distance measure d between the true underlying distribution P
(which is unknown and random) and the hypothesized distribution F. Based
on sample data, the posterior distribution of d then provides the basis for
determining fit.

Ferguson (1973, 1974) introduced the Dirichlet process as a tool for carry-
ing out nonparametric Bayesian inference. A review of the Dirichlet process
is given by Ferguson, Phadia and Tiwari (1992). For testing the precise hy-
pothesis Hy : P = F let P be a Dirichlet process on (R,B) with parameter
« where B is the Borel-o-algebra on R. Thus the Dirichlet process defines
the prior distribution on P. Although it is well known that P is discrete
with probability 1, this technicality can be overcome. By imposing the weak
topology, the closure of the support of the Dirichlet process is extended to
the space of all probability measures absolutely continuous with respect to a.
This larger space is more in keeping with the spirit of classical goodness-of-fit
which does not specify an alternative hypothesis (i.e. any alternative is pos-
sible). Therefore we need a measure of discrepancy which metrizes the weak
topology. Amongst the possible measures, we choose the Kolmogorov distance
as it 1s computationally simple and is readily interpretable as the maximum
difference in cumulative probability between 2 distributions. More precisely,
letting Fy and F; be distribution functions, the Kolmogorov distance between
£y and F; is given by

d(F1, Fy) = sup [Fi(x) — Fy(x)].

z€R

In testing the Bernoulli model, the Kolmogorov distance between the true
underlying P ~ Bernoulli(§) and the hypothesized F' ~ Bernoulli(y) reduces
to d = |0 — 0| as in Section 2. We note that we have experimented with other

metrics such as the Lévy distance and have obtained similar results.



We now state the main result from Ferguson (1973) which is used in de-
veloping our methodology: For every £ = 1,2,... and any measurable par-
tition (Aq,..., Ax) of R, the posterior distribution of P(A1),..., P(Ay) is
Dirichlet(a(Ay) + 37 14, (@), ..., Ag) + 37 La, () where I is the indica-
tor function on the set (). As in Bernoulli testing, we choose the parameter
a = mF such that F(P) = F (Ferguson, 1973).

Unlike expression (1), the posterior distribution function of d can no longer
be expressed as a simple one-dimensional integral. Our approach then is Monte
Carlo. We generate posterior distributions P;, from which we calculate d(P;, F')
and build up the posterior distribution of the Kolmogorov distance d.

The algorithm begins with the recognition that we can generate right con-
tinuous step functions P which approximate the random posterior distribution
function P to any required accuracy (in Kolmogorov distance). Perhaps the
simplest way of doing this is given by Muliere and Tardella (1998) whose
method involves a truncation of the Sethuraman (1994) construction of the
Ferguson-Dirichlet distribution. That is, we generate a; ~ Beta(l,m + n)
and y; ~ (mF + I,;)/(m + n) independently for ;7 = 1,...,k until (1 —
ay)--- (1 — ag_1) is less than some prescribed tolerance. The random step
function P is then given by the finite mixture Z] Lw;l,, where wy = aq,
wr=(1—aq1) - (I—agq) and wj = (1—eq) -+ - (1—aj_g)ajfor gy = 1,.. . k—1.
Thus P is a finite discrete distribution on the set {y1, - Yk}

Having generated P we Calculate the Kolmogorov distance d = al(]3 F).
Letting yo = —oo, we calculate d |P(yZ 1) — F(y;)| and d( |]5( ;) —

Fy;)| for e =1,... k. Then

d(P,F) =max (d",d®, ... d", d). (3)

Of special interest is the test for uniformity (i.e. F ~ Uniform(0,1)).
Here the support is compact, we define yo = 0 and note that (3) simplifies
via F'(y) = y. The importance of the test for uniformity stems from the
observation that for a given precise continuous hypothesis Hy : Py = F with
sample data x1,...,2, we can make a change of variables U = F(X) via
the probability integral transformation. This leads to an equivalent test of
Hy : Py = U with sample data uq,...,u, where u; = F(x;),7=1,...,n and
U ~ Uniform(0, 1). Therefore only a single program is needed for the general



testing of continuous precise hypotheses.

How do we elicit the prior mass m in these general tests of precise hy-
pothesesI” We suggest that the experimenter consider the initial measurement
precision pgy of the original data xq,...,z,. For example, if the data are mea-
sured in feet and py = .5, then we are stating that the z’s are rounded to the
nearest foot. Alternatively, an experimenter may measure the data in feet to
several decimal points but then reason that for practical purposes a measure-
ment of 283.648 feet (for example) is essentially the same as a measurement
of 284 feet. In this case we would also set po = .5. Having specified pg, we
then investigate the maximum effect of the precision py on the uniform scale.

Mathematically, we calculate
p" = max {F(x+po) — F'(x)}. (4)

It is clear that p* satisfies a desirable location-scale invariance based on the
initial measurement scale. For example, we would obtain the same value of p*
having measured the z’s in feet with py = .5 or having measured the 2’s in
vards with with po = 3(.5) = 1.5. Now the transformed precision p* has the
maximum effect of shifting the line y = @ (corresponding to the Uniform(0,1)
distribution function) a “practically equivalent” horizontal distance p*. This,
in turn, defines the Kolmogorov distance €* = p* which we view as practical
equivalence. Therefore, the suggested procedure results in posterior inferences
regarding the Kolmogorov distance d that are invariant to location-scale trans-
formations of the data xq,...,z,.

In summary, prior elicitation is straightforward as the experimenter is re-

quired to answer the following 2 questions:

(A) What is the measurement precision po of the data xq,...,z,
that I care aboutl’ In other words, what is the maximum value
po such that a measurement x 4 pg could be considered practically

equivalent to xI’

(B) What is my prior belief ¢ that the true underlying distribution
P is practically equivalent (in the sense of (A)) to the specified
distribution FT



Using (4) to obtain p* and letting €* = p*, the prior mass m is then obtained
iteratively. To carry out the iteration, begin with an initial value m = mg and
generate N random d’s from the prior distribution. Estimate P(d < €*) by the
proportion of the random d’s that are less than or equal to ¢*. If this estimate
is smaller (larger) than ¢, increase (decrease) m and repeat the procedure.
Terminate the algorithm when the estimate is within a certain number of
standard errors of q. Naturally, accuracy will increase as N is increased.

Now, Ferguson (1974) describes m = m,, , as the prior sample size. This
interpretation is immediate from the Sethuraman (1994) construction of the
Ferguson-Dirichlet distribution. Therefore, as a check on prior elicitation, one
may consider the ratio n/m. For smaller ratios, posterior inferences are not as
sensitive to the data as more of the P—sampling is from F'. In these cases, one
may consider decreasing ¢ to increase the ratio n/my, .

From a theoretical perspective, it is clear from the Sethuraman (1994)
construction of the Ferguson-Dirichlet distribution that as the sample size
increases (i.e. n — 00), the Ferguson-Dirichlet distribution samples from the
ecdf (empirical cumulative distribution function). Therefore, in large samples,
the Kolmogorov distance d is insensitive to the prior specification m. Moreover,
since the ecdf converges in distribution to the true underlying distribution P,
one can establish the consistency of the Kolmogorov metric.

In the case of precise discrete hypotheses Hy : P = F, the theory is exactly
the same as in the continuous case except that there is no probability integral
transformation to uniformity. Here, the simulations and distance calculations

are done on the F' scale.

Example 2. We consider a common situation where a statistical procedure
(e.g. regression) gives rise to residuals that are checked against the standard
normal distribution. With large samples, it is often the case that even though
the residuals appear satisfactory, formal statistical tests reject the null hypoth-
esis of normality. We fit the simple autoregressive model y; = Bo + S1yi—1 + €
where y1, ..., Y1150 are heights measured at 1 micron intervals along the drum
of a roller and the ¢, are independent Normal(0,c?) errors. The dataset was
studied in Laslett (1994) and is available from the jasadata section of Statlib
(http://lib.stat.cmu.edu/). Using the standardized residuals from the fitted
model the corresponding qq plot is given in Figure 2. Although the residu-



als clearly show departures from normality, for some practitioners, apart from
outliers in the left tail, the residual plot would appear adequate. Yet, in this ex-
ample, standard goodness-of-fit procedures such as the Anderson-Darling test
and the Cramer-von Mises test emphatically reject the hypothesis of normal-
ity with p-values near zero. Using our methodology, we consider measurement
precisions of py = .05 and py = .01 where the former corresponds to accuracy
in the standardized residuals to the first decimal place. Using (4), these val-
ues translate to € = p* = .02 and €* = p* = .04 respectively as meaningful
distances on the uniform scale. To investigate prior sensitivity, Table II gives
posterior probabilities that d < €* for a wide range of values of the prior mass
m. We see that the posterior probabilities are fairly robust with respect to the
prior specification and that in the case of € = .04, there is no reason to reject

the hypothesis of approximate normality.

Table 1T
Posterior probability that d < ¢* in Example 2.

m | e =.02 e =.04
1 0.00 0.76
50 0.00 0.83
100 0.00 0.88

4. TESTS OF COMPOSITE HYPOTHESES

We now consider the composite hypothesis Hy : P = Fj for some 6 €
where P is the true underlying distribution and £y is a member of a family of
distributions indexed by the parameter § € ). Our setup and approach is the
same as in the general case presented in Section 3 with the addition of a prior
distribution 7(6) on 6.

For composite hypotheses, we observe that there is no transformation of
the data which leads to a test of uniformity since such a transformation would
depend on the unknown parameter §. This means that a special program needs
to be written for every hypothesized family of distributions. Fortunately, only

modules of a standard program need to be modified. The situation is the same,

10



if not more daunting, in the classical goodness-of-fit framework (see Chapter
4 of D’Agostino and Stephens (1986)).

Given ag = mFjy, a hyper-prior () must be chosen to complete the prior
specification. We continue to advocate a subjective Bayesian approach and
attempt to elicit priors from the experimenter. Standard default priors can
also be considered although many of these are improper. The elicitation of
the prior mass m is again guided by the notions of measurement precision and
practical equivalence between distributions. If pg is the measurement precision
of the z’s, then we recommend setting

¢ = max {F()(x + po) = ()} (5)
as this represents the Kolmogorov distance between the hypothesized distribu-
tion and a practically equivalent distribution evaluated at the expected value
of 6.

As before, we generate right continuous step functions P which approxi-
mate a random posterior distribution function to any required accuracy (in
Kolmogorov distance). However, there are now two steps involved in gener-
ating P. We must first generate fy from the distribution of # | 2 and then
generate P from the distribution of P | 0o, 2. Whereas the latter distribution

is a Dirichlet process, the density corresponding to the distribution of 8 | z is

012) o (I] fole) x(0) )

where fy is the density corresponding to Fy (see the Appendix). Sampling from
the non-standard distribution given by (6) may require specialized techniques
such as rejection sampling (Devroye (1986)), adaptive rejection sampling (Gilks
and Wild (1992)) or Metropolis-Hastings (Tierney (1994)).

Having generated (6, ]5), we are no longer able to calculate the distance
metric d(fj, F) since F' = Fy depends on the unknown parameter 6. Instead

for composite hypotheses, we calculate
d* = d(P, Fy,) (7)

which has intuitive appeal as a diagnostic for fit. It measures the distance
between a posterior realization of the model and the hypothesized model eval-

uated at the same realization of 0.

11



Substituting the generated 6y in (7) is similar to the calculation of the dis-
crepancy variable used in obtaining posterior predictive p-values as discussed
in Gelman, Meng and Stern (1996). In their approach, the discrepancy vari-
able D(x;0) is also a function of both the data and the parameter. Given
the observed data z.ps, the parameter 0; is first generated from the posterior
distribution, and given its value, data ™ is drawn from its conditional dis-

tribution. The procedure is repeated to build up the reference distribution of

the pairs (D(zobs; 0;), D(2P;0;)).

Example 3. We consider a composite test of exponentiality. Using our nota-
tion, we test Hg : P = Fy where Fjy is the exponential distribution with mean
0 > 0. The data consist of a sample of size n = 40 generated from the Chi-
squared(H) distribution and are presented in Table III. We stipulate a precision
of po = .25 which corresponds to meaningful measurements in the upper or
lower half of the first decimal point. In order to generate from the prior distri-
bution we require that 7 () be proper, and for this we choose # ~ Normal(5, 1)
truncated on the left at zero. Letting ¢ = .2 represent our prior belief that the
true underlying distribution is exponential, we obtain ¢* = .049 via (5) and
the prior mass m = 159 by solving P(d* < €*) = ¢ iteratively. Sampling from
the distribution of 8 | z is carried out via the Metropolis-Hastings algorithm
using an independence chain with 7(6) as the proposal density. In more detail,
our implementation for generating d* from its posterior distribution involves
first generating 6(®) ~ 7(#). We then generate u; ~ Uniform(0,1), 80 ~ 7(0)
and set ) = =1 if

P> o = (9= /gyn — SN " (1/69 — 1760V
v > g = OO el = 3 (10 = 100y
for 1 = 1,...,1000. The final variate 6, = 019 is taken as a realization

from the distribution of |  from which we generate P from the distribution
of P | 0p,2 and calculate d* = d(P,F@O). By using a different Metropolis-
Hastings chain for each d* as described here, we have ensured independence of
the variates 0. Convergence of the individual chains is suggested by standard
procedures such as the use of the Gelman and Rubin diagnostic as described in
Gelman (1996). A kernel density estimate of the posterior of d* based on 2000

Monte Carlo simulations is plotted in Figure 3. The kernel density estimate

12



was obtained using the Splus function “density” with the width parameter
set equal to .029. Despite the strong prior, the graph rightly provides some
evidence against the composite null hypothesis of exponentiality. Here the
posterior probability that d < €* is .123 which yields the Bayes factor 1.78.
For comparison purposes, consider a less informative prior based on ¢ = .075
(ie. m = 110). Here the posterior probability that d < € is .039 which gives
the Bayes factor 2.00. The relative stability of the Bayes factor indicates a

lack of sensitivity to the prior in this example.

Table 111

The data from Example 3 presented in increasing order across rows.

0277 1.054 1.138 1.946  1.953
2227 2293 2598  2.937  3.000
3.296  3.385  3.501  3.335 3.615
3.616  3.827 4386  4.399  4.405
4585 4779 4984 5317  5.331
5.637  6.570  6.808  7.283  7.306
7413 7508 8288  8.638  9.691
10.951 12.017 13.467 17.271 17.477

We remark that we have experimented with diagnostics other than (7) in
the context of testing composite hypotheses. For example, we have imple-

mented the diagnostic
dint = {;gg} d(P7 Fe) (8)

as a measure of fit for exponentiality. Note that di,r < d*. The difficulty with
the general use of diys involves the optimization in (8). Typically, the difficulty

of the optimization increases as the dimensionality of # increases.

5. TESTS OF BAYESIAN MODELS

Up until this point we have investigated the adequacy of classical models
using Bayesian methods. These methods may serve as a useful screening device

as often an experimenter may want to check the underlying distribution of
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data (e.g. normality) before proceeding to more specialized procedures (e.g.
ANOVA) that depend on the underlying distribution. With classical models
we specify a prior mass m, and we also specify a prior distribution 7(6) if the
hypothesized distribution is composite. In this context we may think of m and
7(6) as model expansion parameters which allow us to judge departures from
the hypothesized model.

The situation is more natural in the case of Bayesian models. Suppose that
we have a sample x1, ..., z, from a hypothesized model Fj with a proper prior
distribution #(#). Then the methodology follows exactly as before where we
need only specify the prior mass m. Here we avoid placing a prior probability
mass on a null model which is widely considered one of the more distasteful
aspects of Bayesian hypothesis testing. Note also, that in the case of hierar-
chical models, there is no additional difficulty. For example, in a two-stage
hierarchical model, we simply write 7(6) = 7(6, | 62)7(02) to complete the

prior specification.

Example 4. To highlight the practicality of the methodology for Bayesian
models, we address a question that was posed by Seymour Geisser in the
model checking session (Session 6) of the 1996 Joint Statistical Meetings held
in Chicago. He asked, “Given a sample x4, ..., x,, how can I test the adequacy
of the Binomial( N, #) model with a given prior for 61”7 We let N = 10, n = 50
and consider the prior § ~ Beta(12,12) such that the prior standard deviation
of § is .10. We simulate data xy,..., x50 from a Poisson(2) distribution. The
data appear in Table IV with T'= 3" x; = 103. For large N and small 8, the
relationship between the Binomial and Poisson distributions is well known.
We naturally choose py = .5 so as not to alter the value of integer data and
we let ¢ = 1/3 which assigns prior probability 1/3 to the binomial model.
From (6), we generate 6y according to 8 | x ~ Beta(7 + 12,500 — 7' 4 12) and
we then generate p according to the distribution of P | g,z in the standard
way. We obtain €* = (150) (1/2)1 = .246 via (5) and m = 25.5. We note that
the posterior probability that d < €* is .39, a slight increase from the prior
probability ¢ = 1/3. Here, the affirmation of practical equivalence between
the underlying distribution and the binomial distribution is sensible as the
Kolmogorov distance between a Binomial(10,.2) distribution and a Poisson(2)

distribution is .032 < ¢*.
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Table IV
The data from Example 4.

Outcome |0 1 2 3 4 5 6
Frequency | 7 12 14 9 5 2 1

There is a generalization of the methodology which applies equally well to
both classical and Bayesian models. Suppose that the sample & = (x4,...,2,)
is multivariate of dimension r. In principle, there is no need to change the
approach. We generate a variate 0y from the distribution of 0 | z, we generate
P from the distribution of P | 0o, 2 and then calculate d* = d(p, Fy,). However,
whereas the univariate calculation of the Kolmogorov distance in (3) involves
the maximization of 2k distances, the multivariate calculation (r > 1) involves
the maximization of up to 2[k + (5)] distances where we recall that k is the

number of components in the randomly generated step function P.

6. CONCLUSIONS

In this paper we have developed a theory of goodness-of-fit that allows an
experimenter to test the practical scientific hypothesis of whether an underly-
ing distribution is close to some hypothesized distribution. The methodology
is useful for testing the adequacy of both classical and Bayesian models and is
applicable when we have sample data and proper priors. Unlike many of the
recent hybrid techniques that are based upon a synthesis of ideas involving
posterior distributions and p-values, our approach is fully Bayesian. We begin
with a prior opinion concerning distance between the true and hypothesized
model, and via the data, the belief is updated and expressed by the posterior
distribution. Moreover, the approach is systematic in the sense that the same
steps are followed whether we are testing precise or composite hypotheses and
whether the data is univariate or multivariate. This is in sharp contrast to the
multitude of goodness-of-fit tests in current statistical practice.

The difficulty with the approach is also its strength. One cannot blindly
use the methods as a black box procedure. Rather, the experimenter must be

able to sit down and carefully think about meaningful measurement precision.

15



Clearly, if you want to be able to test closeness, you must be able to define it.
Our elicitation procedure is a practical means of achieving this end.

We take the view that testing model adequacy is a difficult problem. There
are many ways in which a distribution can depart from a hypothesized model
and not every diagnostic will catch every departure. We therefore consider our
approach as only one of several that might be part of the toolkit of diagnostics
used to check model adequacy. Of particular importance, we have developed
a single algorithm for testing the fit of an underlying distribution to any pre-
cise continuous hypothesis. Fortran code for this algorithm and for the other

examples described in this paper are available from the author upon request.

APPENDIX

We indicate the form of the distribution of |  as given in (6). The density
is given by

012 = [10.P|a]dr
< [lz10,PL[P|0] 7(0) aP
= [lz| P[P | 0] 7(6) aP.

We sample P according to the Muliere/Tardella (1998) truncation of the
Sethuraman construction. We therefore let P = (P(A41),..., P(Ak41)) where
A = (Yie1, yi] with yo = —00 <91 < -+ < Ypp1 = oo. It follows that [z | P] is
a multinomial density with parameter P(A;) raised to the power 37_; I4,(x;)
and that [P | ] is a Dirichlet density with P(A;) raised to the power ag(A4;)—1,

t=1,...,k+ 1. Collecting exponents and integrating, we obtain

U(ag(Ar) + 30 Lay (1)) - Dlag(Ag—1) + 27 La,_, (20))
I'(ag(Ar)) -+ T(ag(Ag-1))

Assuming that none of the data values are equal, we let & — oo and note that

[0 ] z] ©(0).

we have either 0 or 1 observations lying in each of the intervals Ay,..., Agpiq.
Since I'(x + 1) = al'(x) and ag(A;) = m(Fy(y:) — Fo(yi—1)) we obtain the
limiting density

0] 2] (f[lfe(wi)) ~(0)
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where fy is the density corresponding to Fj.
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FIG.1: The posterior density of the distance d in Example 1.
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FIG. 2: The qq plot from the model in Example 2.

o®
..
~ Ve
o
o)
©
=}
S
)
()
o
©
(7]
N
B oo
[
©
= s
] F e
7
o
o
L]
..
.
]
Q‘i L]
:
[ ]
]
o _
.
L]
\ \
2 0

standard normal quantiles

21




FIG. 3: A kernel density estimate of the posterior distance d* in Example 3.
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