
NONPARAMETRIC GOODNESS-OF-FITTim SwartzDepartment of Mathematics and StatisticsSimon Fraser UniversityBurnaby, BC Canada V5A1S6Keywords: Monte Carlo; hypothesis testing; Dirichlet process; prior elicita-tion. ABSTRACTThis paper develops an approach to testing the adequacy of both classical andBayesian models given sample data. An important feature of the approachis that we are able to test the practical scienti�c hypothesis of whether thetrue underlying model is close to some hypothesized model. The notion ofcloseness is based on measurement precision and requires the introduction ofa metric for which we consider the Kolmogorov distance. The approach isnonparametric in the sense that the model under the alternative hypothesis isa Dirichlet process. 1. INTRODUCTIONAlthough Bayesian applications have seen unprecedented growth in thelast 10 years, there is no consensus on the correct approach to Bayesian modelchecking. A selection of diverse approaches that address Bayesian model check-ing includes Guttman (1967), Guttman, Dutter and Freeman (1978), Chalonerand Brant (1988), Weiss (1994), Gelman, Meng and Stern (1996), Verdinelliand Wasserman (1996), Albert and Chib (1997), Evans (1997), Hodges (1998)and Dey, Gelfand, Swartz and Vlachos (1998).1



In classical model checking, informal methods are based on the inspectionof graphical displays such as residual plots. Formal methods, which often goby the name \goodness-of-�t" rely on a p-value and involve the test of a nullhypothesis without the speci�cation of an alternative hypothesis. To many,goodness-of-�t methods are appealing since the space of alternative hypothesesis rarely known. In principle, Bayesian testing cannot mimic the classicalgoodness-of-�t approach since Bayesian methods require the speci�cation ofan alternative hypothesis and the associated prior. D'Agostino and Stephens(1986) is a comprehensive source for classical goodness-of-�t techniques.The classical goodness-of-�t approach considers null hypotheses such as\H0 : the underlying model is normal". It is widely accepted that such hy-potheses are rarely true, and that given a large enough sample, one will obtaina su�ciently small p-value to reject the null hypothesis. In this case, whatmost experimenters really want to assess is the actual scienti�c hypothesis ofwhether the underlying model is close to normal. Thus there is a major gapbetween the classical goodness-of-�t approach and what experimenters reallywant to test.In this paper we develop a systematic approach to model checking that isin the spirit of classical goodness-of-�t (i.e. avoids formulating a parametricalternative hypothesis) yet addresses the actual scienti�c hypothesis of interest(i.e. closeness). Our approach is fully Bayesian but is applicable to both clas-sical and Bayesian models. The main tool in our methodology is the Dirichletprocess which puts us in the nonparametric Bayesian framework and implic-itly assigns an alternative hypothesis. The notion of closeness requires theintroduction of a metric for which we consider the Kolmogorov distance. Ourapproach then is straightforward: Based on sample data, the theory of theDirichlet process provides the posterior of the true underlying model. Usingthe Kolmogorov metric, we calculate the posterior distance of the true un-derlying model from the hypothesized model. Inference is then based on theposterior distribution of the Kolmogorov distance. The methods are highlycomputational.The idea of assessing closeness to a null hypothesis has previously beenexplored by Evans, Gilula and Guttman (1993) in the analysis of Goodman'sRCmodel. It has also been investigated by Evans, Gilula, Guttman and Swartz2



(1997) in tests of stochastic order for contingency tables.Our nonparametric goodness-of-�t approach requires the user-speci�cationof a single parameter m. Although \most Bayesians rely on the subjectivistfoundations articulated by De Finetti and Savage" (Kass and Wasserman,1996), few are willing and able to go through the pains of prior elicitation. Inthis paper, 2 reasonable questions are asked of the experimenter to elicit therequired prior opinion. For a review of the current state of prior elicitation,see Kadane and Wolfson (1998).Sections 2 through 4 deal with classical models based on univariate sampledata. In Section 2, we develop a test for the Bernoulli model which doesnot require the use of the Dirichlet process. This test is instructional for themore general tests that follow. We also include a discussion of prior selection.Section 3 develops a test for precise hypotheses with arbitrary support andprovides further discussion on prior selection. Of particular importance inSection 3 is the reduction of all continuous precise tests to a test of uniformityvia the probability integral transformation. Tests of composite hypotheses areconsidered in Section 4. The natural extension to Bayesian models is presentedin Section 5 along with a generalization to the case of multivariate sample data.Some concluding remarks are then given in Section 6.2. A TEST FOR THE BERNOULLI MODELTo �x ideas we illustrate the approach in the simplest context before movingon to more general problems. Here we test the adequacy of a hypothesizedBernoulli model. More formally, we test H0 : P = F where P is the trueunderlying distribution and F is the hypothesized Bernoulli(�0) distribution.The observed sample is x1; : : : ; xn where P (Xi = 1) = � and P (Xi = 0) = 1��for i = 1; : : : ; n. The data are summarized by y = Pni=1 xi � Binomial(n; �).The parameter space is one-dimensional and we assign a Beta(�(1); �(0))prior on � where �(0) > 0 and �(1) > 0 are speci�ed. The Beta family isa special case of the Dirichlet family used in Sections 3, 4 and 5. Routinecalculations give the posterior distribution�jx1; : : : ; xn � Beta(y + �(1); n � y + �(0)):3



The metric d = j� � �0j is used to assess the distance between the trueunderlying distribution and the hypothesized distribution. It follows that theposterior distribution function of the metric d is given byP (d < �jx1; : : : ; xn) = Z min(1;�0+�)max(0;�0��) �(a + b)�(a)�(b) ua�1(1 � u)b�1du (1)where a = y+�(1), b = n�y+�(0) and 0 < � < max(�0; 1� �0). The integralin (1) is known as a truncated beta and is readily evaluated.Inference is based on the posterior distribution of d which is the synthesis ofprior information and the observed data concerning d. Note that the posteriordistribution displays results over the range of distances 0 < � < max(�0; 1��0)and is therefore more informative than goodness-of-�t procedures that rely ona single number summary. Although distribution functions are intrinsic toprobability measures, statisticians are generally more experienced and com-fortable when viewing probability density functions. For this reason, we plotthe posterior density when studying the posterior distribution of d. Whenappropriate, we also calculate posterior and prior probabilities that d � � forvarious �.When specifying the prior parameters �(1) and �(0), we take the positionthat testing of H0 : P = F is only done when we have some prior view that P isin the vicinity of F . We therefore take �(1) = m�0 and �(0) = m(1� �0) suchthat E(P ) = F . This leaves us with only the speci�cation of the prior massm.From a subjective Bayesian point of view we specify �� and 0 < q < 1 such thatthe subjective prior probability P (d � ��) = q. Letting �� represent the valueof the metric d = j� � �0j describing practical equivalence of P to F , it thenfollows that the equation P (d � ��) = :5 represents \ignorance" concerning thehypothesis of practical equivalence. For example, a pharmaceutical companymay only report success rates in round percentages (e.g. values such as 76%,83%, etc.). In this case, prior indi�erence concerning practical equivalence ofthe underlying model to the hypothesized Bernoulli(�0) model involves setting�� = :005. From a robust perspective, the experimenter may wish to elicit arange of probabilities q for a given ��. Ideas such as these have been used bySwartz (1993) to obtain subjective priors for the Dirichlet process.Given �0, �� and q, our problem of specifying the prior therefore reduces to4



solving for m in the equationZ min(1;�0+��)max(0;�0���) �(m)�(m�0)�(m(1 � �0)) um�0�1(1 � u)m(1��0)�1du = q (2)As the left hand side of (2) is an increasing function of m, the equation iseasily solved via bisection. Note that a solution does not exist for su�cientlylarge values of ��.Example 1. Consider the test of whether a coin is fair (�0 = 1=2) andsuppose that we observe y = 28 heads in n = 40 ips of the coin. In thisexample, we are apriori indi�erent to the closeness of � to �0 = 1=2 as de�nedby accuracy in the �rst digit of �. We therefore take q = :5, �� = :05 andobtain the prior mass m = 45:76. Figure 1 gives the posterior density of d.Whereas the standard two-tailed test based on the normal approximation tothe Binomial gives a p-value of .018 and rejects the null hypothesis, Figure 1is less conclusive. For example, the posterior probability that d � �� is .202where d � �� corresponds to the null hypothesis of practical equivalence (i.e.:45 � � � :55). To check the sensitivity of the prior speci�cation m, the priorprobability, posterior probability and Bayes factor corresponding to d � �� arecalculated for various values of m and reported in Table I. As expected, theprior and posterior probabilities increase as m increases. However, the Bayesfactor de�ned as the ratio of the prior odds to posterior odds is relativelyconstant as it falls in the range from 2.0 to 6.0. According to Je�reys (1961),such values do not provide strong evidence against the null hypothesis.Table IPrior, posterior and Bayes factor corresponding to d � �� in Example 1.m Prior Posterior Bayes factor1 .064 .026 2.5610 .243 .053 5.7520 .342 .090 5.2450 .519 .221 3.81100 .683 .425 2.92200 .843 .692 2.40500 .974 .948 2.135



3. TESTS OF PRECISE HYPOTHESESWe now consider the precise hypothesis H0 : P = F where P is thetrue underlying distribution and F is some speci�ed continuous distribution.D'Agostino and Stephens (1986) refer to this as the Case 0 situation. Weassume that the support for both P and F is R and that the data consist ofa sample x1; : : : ; xn from P . Our approach is the same as in Section 2: Weintroduce a distance measure d between the true underlying distribution P(which is unknown and random) and the hypothesized distribution F . Basedon sample data, the posterior distribution of d then provides the basis fordetermining �t.Ferguson (1973, 1974) introduced the Dirichlet process as a tool for carry-ing out nonparametric Bayesian inference. A review of the Dirichlet processis given by Ferguson, Phadia and Tiwari (1992). For testing the precise hy-pothesis H0 : P = F let P be a Dirichlet process on (R;B) with parameter� where B is the Borel-�-algebra on R. Thus the Dirichlet process de�nesthe prior distribution on P . Although it is well known that P is discretewith probability 1, this technicality can be overcome. By imposing the weaktopology, the closure of the support of the Dirichlet process is extended tothe space of all probability measures absolutely continuous with respect to �.This larger space is more in keeping with the spirit of classical goodness-of-�twhich does not specify an alternative hypothesis (i.e. any alternative is pos-sible). Therefore we need a measure of discrepancy which metrizes the weaktopology. Amongst the possible measures, we choose the Kolmogorov distanceas it is computationally simple and is readily interpretable as the maximumdi�erence in cumulative probability between 2 distributions. More precisely,letting F1 and F2 be distribution functions, the Kolmogorov distance betweenF1 and F2 is given byd(F1; F2) = supx2R jF1(x)� F2(x)j:In testing the Bernoulli model, the Kolmogorov distance between the trueunderlying P � Bernoulli(�) and the hypothesized F � Bernoulli(�0) reducesto d = j�� �0j as in Section 2. We note that we have experimented with othermetrics such as the L�evy distance and have obtained similar results.6



We now state the main result from Ferguson (1973) which is used in de-veloping our methodology: For every k = 1; 2; : : : and any measurable par-tition (A1; : : : ; Ak) of R, the posterior distribution of P (A1); : : : ; P (Ak) isDirichlet(�(A1) +Pn1 IA1(xi); : : : ; �(Ak) +Pn1 IAk(xi)) where IQ is the indica-tor function on the set Q. As in Bernoulli testing, we choose the parameter� = mF such that E(P ) = F (Ferguson, 1973).Unlike expression (1), the posterior distribution function of d can no longerbe expressed as a simple one-dimensional integral. Our approach then is MonteCarlo. We generate posterior distributions Pi, from which we calculate d(Pi; F )and build up the posterior distribution of the Kolmogorov distance d.The algorithm begins with the recognition that we can generate right con-tinuous step functions P̂ which approximate the random posterior distributionfunction P to any required accuracy (in Kolmogorov distance). Perhaps thesimplest way of doing this is given by Muliere and Tardella (1998) whosemethod involves a truncation of the Sethuraman (1994) construction of theFerguson-Dirichlet distribution. That is, we generate �j � Beta(1;m + n)and yj � (mF + Ix)=(m + n) independently for j = 1; : : : ; k until (1 ��1) � � � (1 � �k�1) is less than some prescribed tolerance. The random stepfunction P̂ is then given by the �nite mixture Pkj=1wjIyj where w1 = �1,wk = (1��1) � � � (1��k�1) and wj = (1��1) � � � (1��j�1)�j for j = 1; : : : ; k�1.Thus P̂ is a �nite discrete distribution on the set fy1; : : : ; ykg.Having generated P̂ , we calculate the Kolmogorov distance d = d(P̂ ; F ).Letting y0 = �1, we calculate d(1)i = jP̂ (yi�1) � F (yi)j and d(2)i = jP̂ (yi) �F (yi)j for i = 1; : : : ; k. Thend(P̂ ; F ) = max (d(1)1 ; d(2)1 ; : : : ; d(1)k ; d(2)k ): (3)Of special interest is the test for uniformity (i.e. F � Uniform(0; 1)).Here the support is compact, we de�ne y0 = 0 and note that (3) simpli�esvia F (y) = y. The importance of the test for uniformity stems from theobservation that for a given precise continuous hypothesis H0 : PX = F withsample data x1; : : : ; xn we can make a change of variables U = F (X) viathe probability integral transformation. This leads to an equivalent test ofH0 : PU = U with sample data u1; : : : ; un where ui = F (xi), i = 1; : : : ; n andU � Uniform(0; 1). Therefore only a single program is needed for the general7



testing of continuous precise hypotheses.How do we elicit the prior mass m in these general tests of precise hy-potheses? We suggest that the experimenter consider the initial measurementprecision p0 of the original data x1; : : : ; xn. For example, if the data are mea-sured in feet and p0 = :5, then we are stating that the x's are rounded to thenearest foot. Alternatively, an experimenter may measure the data in feet toseveral decimal points but then reason that for practical purposes a measure-ment of 283.648 feet (for example) is essentially the same as a measurementof 284 feet. In this case we would also set p0 = :5. Having speci�ed p0, wethen investigate the maximum e�ect of the precision p0 on the uniform scale.Mathematically, we calculatep� = maxx2R fF (x+ p0)� F (x)g: (4)It is clear that p� satis�es a desirable location-scale invariance based on theinitial measurement scale. For example, we would obtain the same value of p�having measured the x's in feet with p0 = :5 or having measured the x's inyards with with p0 = 3(:5) = 1:5. Now the transformed precision p� has themaximum e�ect of shifting the line y = x (corresponding to the Uniform(0; 1)distribution function) a \practically equivalent" horizontal distance p�. This,in turn, de�nes the Kolmogorov distance �� = p� which we view as practicalequivalence. Therefore, the suggested procedure results in posterior inferencesregarding the Kolmogorov distance d that are invariant to location-scale trans-formations of the data x1; : : : ; xn.In summary, prior elicitation is straightforward as the experimenter is re-quired to answer the following 2 questions:(A) What is the measurement precision p0 of the data x1; : : : ; xnthat I care about? In other words, what is the maximum valuep0 such that a measurement x� p0 could be considered practicallyequivalent to x?(B) What is my prior belief q that the true underlying distributionP is practically equivalent (in the sense of (A)) to the speci�eddistribution F ? 8



Using (4) to obtain p� and letting �� = p�, the prior mass m is then obtainediteratively. To carry out the iteration, begin with an initial value m = m0 andgenerate N random d's from the prior distribution. Estimate P (d � ��) by theproportion of the random d's that are less than or equal to ��. If this estimateis smaller (larger) than q, increase (decrease) m and repeat the procedure.Terminate the algorithm when the estimate is within a certain number ofstandard errors of q. Naturally, accuracy will increase as N is increased.Now, Ferguson (1974) describes m = mp0;q as the prior sample size. Thisinterpretation is immediate from the Sethuraman (1994) construction of theFerguson-Dirichlet distribution. Therefore, as a check on prior elicitation, onemay consider the ratio n=m. For smaller ratios, posterior inferences are not assensitive to the data as more of the P̂ -sampling is from F . In these cases, onemay consider decreasing q to increase the ratio n=mp0;q.From a theoretical perspective, it is clear from the Sethuraman (1994)construction of the Ferguson-Dirichlet distribution that as the sample sizeincreases (i.e. n ! 1), the Ferguson-Dirichlet distribution samples from theecdf (empirical cumulative distribution function). Therefore, in large samples,the Kolmogorov distance d is insensitive to the prior speci�cationm. Moreover,since the ecdf converges in distribution to the true underlying distribution P ,one can establish the consistency of the Kolmogorov metric.In the case of precise discrete hypotheses H0 : P = F , the theory is exactlythe same as in the continuous case except that there is no probability integraltransformation to uniformity. Here, the simulations and distance calculationsare done on the F scale.Example 2. We consider a common situation where a statistical procedure(e.g. regression) gives rise to residuals that are checked against the standardnormal distribution. With large samples, it is often the case that even thoughthe residuals appear satisfactory, formal statistical tests reject the null hypoth-esis of normality. We �t the simple autoregressive model yt = �0+ �1yt�1 + �twhere y1; : : : ; y1150 are heights measured at 1 micron intervals along the drumof a roller and the �t are independent Normal(0; �2) errors. The dataset wasstudied in Laslett (1994) and is available from the jasadata section of Statlib(http://lib.stat.cmu.edu/). Using the standardized residuals from the �ttedmodel the corresponding qq plot is given in Figure 2. Although the residu-9



als clearly show departures from normality, for some practitioners, apart fromoutliers in the left tail, the residual plot would appear adequate. Yet, in this ex-ample, standard goodness-of-�t procedures such as the Anderson-Darling testand the Cramer-von Mises test emphatically reject the hypothesis of normal-ity with p-values near zero. Using our methodology, we consider measurementprecisions of p0 = :05 and p0 = :01 where the former corresponds to accuracyin the standardized residuals to the �rst decimal place. Using (4), these val-ues translate to �� = p� = :02 and �� = p� = :04 respectively as meaningfuldistances on the uniform scale. To investigate prior sensitivity, Table II givesposterior probabilities that d � �� for a wide range of values of the prior massm. We see that the posterior probabilities are fairly robust with respect to theprior speci�cation and that in the case of �� = :04, there is no reason to rejectthe hypothesis of approximate normality.Table IIPosterior probability that d � �� in Example 2.m �� = :02 �� = :041 0.00 0.7650 0.00 0.83100 0.00 0.884. TESTS OF COMPOSITE HYPOTHESESWe now consider the composite hypothesis H0 : P = F� for some � 2 
where P is the true underlying distribution and F� is a member of a family ofdistributions indexed by the parameter � 2 
. Our setup and approach is thesame as in the general case presented in Section 3 with the addition of a priordistribution �(�) on �.For composite hypotheses, we observe that there is no transformation ofthe data which leads to a test of uniformity since such a transformation woulddepend on the unknown parameter �. This means that a special program needsto be written for every hypothesized family of distributions. Fortunately, onlymodules of a standard program need to be modi�ed. The situation is the same,10



if not more daunting, in the classical goodness-of-�t framework (see Chapter4 of D'Agostino and Stephens (1986)).Given �� = mF�, a hyper-prior �(�) must be chosen to complete the priorspeci�cation. We continue to advocate a subjective Bayesian approach andattempt to elicit priors from the experimenter. Standard default priors canalso be considered although many of these are improper. The elicitation ofthe prior mass m is again guided by the notions of measurement precision andpractical equivalence between distributions. If p0 is the measurement precisionof the x's, then we recommend setting�� = maxx2R fFE(�)(x+ p0)� FE(�)(x)g (5)as this represents the Kolmogorov distance between the hypothesized distribu-tion and a practically equivalent distribution evaluated at the expected valueof �.As before, we generate right continuous step functions P̂ which approxi-mate a random posterior distribution function to any required accuracy (inKolmogorov distance). However, there are now two steps involved in gener-ating P̂ . We must �rst generate �0 from the distribution of � j x and thengenerate P̂ from the distribution of P j �0; x. Whereas the latter distributionis a Dirichlet process, the density corresponding to the distribution of � j x is[� j x] / ( nYi=1 f�(xi)) �(�) (6)where f� is the density corresponding to F� (see the Appendix). Sampling fromthe non-standard distribution given by (6) may require specialized techniquessuch as rejection sampling (Devroye (1986)), adaptive rejection sampling (Gilksand Wild (1992)) or Metropolis-Hastings (Tierney (1994)).Having generated (�0; P̂ ), we are no longer able to calculate the distancemetric d(P̂ ; F ) since F = F� depends on the unknown parameter �. Insteadfor composite hypotheses, we calculated� = d(P̂ ; F�0) (7)which has intuitive appeal as a diagnostic for �t. It measures the distancebetween a posterior realization of the model and the hypothesized model eval-uated at the same realization of �. 11



Substituting the generated �0 in (7) is similar to the calculation of the dis-crepancy variable used in obtaining posterior predictive p-values as discussedin Gelman, Meng and Stern (1996). In their approach, the discrepancy vari-able D(x; �) is also a function of both the data and the parameter. Giventhe observed data xobs, the parameter �j is �rst generated from the posteriordistribution, and given its value, data xrep is drawn from its conditional dis-tribution. The procedure is repeated to build up the reference distribution ofthe pairs (D(xobs; �j);D(xrep; �j)).Example 3. We consider a composite test of exponentiality. Using our nota-tion, we test H0 : P = F� where F� is the exponential distribution with mean� > 0. The data consist of a sample of size n = 40 generated from the Chi-squared(5) distribution and are presented in Table III. We stipulate a precisionof p0 = :25 which corresponds to meaningful measurements in the upper orlower half of the �rst decimal point. In order to generate from the prior distri-bution we require that �(�) be proper, and for this we choose � � Normal(5; 1)truncated on the left at zero. Letting q = :2 represent our prior belief that thetrue underlying distribution is exponential, we obtain �� = :049 via (5) andthe prior mass m = 159 by solving P (d� � ��) = q iteratively. Sampling fromthe distribution of � j x is carried out via the Metropolis-Hastings algorithmusing an independence chain with �(�) as the proposal density. In more detail,our implementation for generating d� from its posterior distribution involves�rst generating �(0) � �(�). We then generate ui � Uniform(0; 1), �(i) � �(�)and set �(i) = �(i�1) ifui > [�(i) j x]�(�(i�1))[�(i�1) j x]�(�(i)) = (�(i�1)=�(i))n expf� nXi=1 xi(1=�(i) � 1=�(i�1))gfor i = 1; : : : ; 1000. The �nal variate �0 = �(1000) is taken as a realizationfrom the distribution of � j x from which we generate P̂ from the distributionof P j �0; x and calculate d� = d(P̂ ; F�0). By using a di�erent Metropolis-Hastings chain for each d� as described here, we have ensured independence ofthe variates �0. Convergence of the individual chains is suggested by standardprocedures such as the use of the Gelman and Rubin diagnostic as described inGelman (1996). A kernel density estimate of the posterior of d� based on 2000Monte Carlo simulations is plotted in Figure 3. The kernel density estimate12



was obtained using the Splus function \density" with the width parameterset equal to .029. Despite the strong prior, the graph rightly provides someevidence against the composite null hypothesis of exponentiality. Here theposterior probability that d � �� is .123 which yields the Bayes factor 1.78.For comparison purposes, consider a less informative prior based on q = :075(ie. m = 110). Here the posterior probability that d � �� is .039 which givesthe Bayes factor 2.00. The relative stability of the Bayes factor indicates alack of sensitivity to the prior in this example.Table IIIThe data from Example 3 presented in increasing order across rows.0.277 1.054 1.138 1.946 1.9532.227 2.293 2.598 2.937 3.0003.296 3.385 3.501 3.535 3.6153.616 3.827 4.386 4.399 4.4054.585 4.779 4.984 5.317 5.3315.637 6.570 6.808 7.283 7.3067.413 7.508 8.288 8.638 9.69110.951 12.017 13.467 17.271 17.477We remark that we have experimented with diagnostics other than (7) inthe context of testing composite hypotheses. For example, we have imple-mented the diagnostic dinf = inff�2
g d(P;F�) (8)as a measure of �t for exponentiality. Note that dinf � d�. The di�culty withthe general use of dinf involves the optimization in (8). Typically, the di�cultyof the optimization increases as the dimensionality of � increases.5. TESTS OF BAYESIAN MODELSUp until this point we have investigated the adequacy of classical modelsusing Bayesian methods. These methods may serve as a useful screening deviceas often an experimenter may want to check the underlying distribution of13



data (e.g. normality) before proceeding to more specialized procedures (e.g.ANOVA) that depend on the underlying distribution. With classical modelswe specify a prior mass m, and we also specify a prior distribution �(�) if thehypothesized distribution is composite. In this context we may think of m and�(�) as model expansion parameters which allow us to judge departures fromthe hypothesized model.The situation is more natural in the case of Bayesian models. Suppose thatwe have a sample x1; : : : ; xn from a hypothesized model F� with a proper priordistribution �(�). Then the methodology follows exactly as before where weneed only specify the prior mass m. Here we avoid placing a prior probabilitymass on a null model which is widely considered one of the more distastefulaspects of Bayesian hypothesis testing. Note also, that in the case of hierar-chical models, there is no additional di�culty. For example, in a two-stagehierarchical model, we simply write �(�) = �(�1 j �2)�(�2) to complete theprior speci�cation.Example 4. To highlight the practicality of the methodology for Bayesianmodels, we address a question that was posed by Seymour Geisser in themodel checking session (Session 6) of the 1996 Joint Statistical Meetings heldin Chicago. He asked, \Given a sample x1; : : : ; xn, how can I test the adequacyof the Binomial(N; �) model with a given prior for �?" We let N = 10, n = 50and consider the prior � � Beta(12; 12) such that the prior standard deviationof � is .10. We simulate data x1; : : : ; x50 from a Poisson(2) distribution. Thedata appear in Table IV with T = Pxi = 103. For large N and small �, therelationship between the Binomial and Poisson distributions is well known.We naturally choose p0 = :5 so as not to alter the value of integer data andwe let q = 1=3 which assigns prior probability 1/3 to the binomial model.From (6), we generate �0 according to � j x � Beta(T + 12; 500 � T + 12) andwe then generate P̂ according to the distribution of P j �0; x in the standardway. We obtain �� = �105 � (1=2)10 = :246 via (5) and m = 25:5. We note thatthe posterior probability that d � �� is .39, a slight increase from the priorprobability q = 1=3. Here, the a�rmation of practical equivalence betweenthe underlying distribution and the binomial distribution is sensible as theKolmogorov distance between a Binomial(10; :2) distribution and a Poisson(2)distribution is :032 < ��. 14



Table IVThe data from Example 4.Outcome 0 1 2 3 4 5 6Frequency 7 12 14 9 5 2 1There is a generalization of the methodology which applies equally well toboth classical and Bayesian models. Suppose that the sample x = (x1; : : : ; xn)is multivariate of dimension r. In principle, there is no need to change theapproach. We generate a variate �0 from the distribution of � j x, we generateP̂ from the distribution of P j �0; x and then calculate d� = d(P̂ ; F�0). However,whereas the univariate calculation of the Kolmogorov distance in (3) involvesthe maximization of 2k distances, the multivariate calculation (r > 1) involvesthe maximization of up to 2[k + �k2�] distances where we recall that k is thenumber of components in the randomly generated step function P̂ .6. CONCLUSIONSIn this paper we have developed a theory of goodness-of-�t that allows anexperimenter to test the practical scienti�c hypothesis of whether an underly-ing distribution is close to some hypothesized distribution. The methodologyis useful for testing the adequacy of both classical and Bayesian models and isapplicable when we have sample data and proper priors. Unlike many of therecent hybrid techniques that are based upon a synthesis of ideas involvingposterior distributions and p-values, our approach is fully Bayesian. We beginwith a prior opinion concerning distance between the true and hypothesizedmodel, and via the data, the belief is updated and expressed by the posteriordistribution. Moreover, the approach is systematic in the sense that the samesteps are followed whether we are testing precise or composite hypotheses andwhether the data is univariate or multivariate. This is in sharp contrast to themultitude of goodness-of-�t tests in current statistical practice.The di�culty with the approach is also its strength. One cannot blindlyuse the methods as a black box procedure. Rather, the experimenter must beable to sit down and carefully think about meaningful measurement precision.15



Clearly, if you want to be able to test closeness, you must be able to de�ne it.Our elicitation procedure is a practical means of achieving this end.We take the view that testing model adequacy is a di�cult problem. Thereare many ways in which a distribution can depart from a hypothesized modeland not every diagnostic will catch every departure. We therefore consider ourapproach as only one of several that might be part of the toolkit of diagnosticsused to check model adequacy. Of particular importance, we have developeda single algorithm for testing the �t of an underlying distribution to any pre-cise continuous hypothesis. Fortran code for this algorithm and for the otherexamples described in this paper are available from the author upon request.APPENDIXWe indicate the form of the distribution of � j x as given in (6). The densityis given by [� j x] = Z [�; P j x] dP/ Z [x j �; P ] [P j �] �(�) dP= Z [x j P ] [P j �] �(�) dP:We sample P according to the Muliere/Tardella (1998) truncation of theSethuraman construction. We therefore let P = (P (A1); : : : ; P (Ak+1)) whereAi = (yi�1; yi] with y0 = �1 < y1 < � � � < yk+1 =1. It follows that [x j P ] isa multinomial density with parameter P (Ai) raised to the power Pnj=1 IAi(xj)and that [P j �] is a Dirichlet density with P (Ai) raised to the power ��(Ai)�1,i = 1; : : : ; k + 1. Collecting exponents and integrating, we obtain[� j x] / �(��(A1) +Pni=1 IA1(xi)) � � ��(��(Ak�1) +Pni=1 IAk�1(xi))�(��(A1)) � � ��(��(Ak�1)) �(�):Assuming that none of the data values are equal, we let k !1 and note thatwe have either 0 or 1 observations lying in each of the intervals A1; : : : ; Ak+1.Since �(x + 1) = x�(x) and ��(Ai) = m(F�(yi) � F�(yi�1)) we obtain thelimiting density [� j x] / ( nYi=1 f�(xi)) �(�)16
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FIG.1: The posterior density of the distance d in Example 1.
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FIG. 2: The qq plot from the model in Example 2.
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FIG. 3: A kernel density estimate of the posterior distance d� in Example 3.
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