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This paper develops new methods for providing instantaneous in-game
win probabilities for the National Rugby League. Besides the score differ-
ential, betting odds and real-time features extracted from the match event
data are also used as inputs to inform the in-game win probabilities. Rugby
matches evolve continuously in time and the circumstances change over the
duration of the match. Therefore, the match data are considered as functional
data, and the in-game win probability is a function of the time of the match.
We express the in-game win probability using a conditional probability for-
mulation, the components of which are evaluated from the perspective of
functional data analysis. Specifically, we model the score differential process
and functional feature extracted from the match event data as sums of mean
functions and noises. The mean functions are approximated by B-spline basis
expansions with functional parameters. Since each match is conditional on a
unique kickoff win probability of the home team obtained from the betting
odds (i.e. the functional data are not independent and identically distributed),
we propose a weighted least squares method to estimate the functional pa-
rameters by borrowing the information from matches with similar kickoff
win probabilities. The variance and covariance elements are obtained by the
maximum likelihood estimation method. The proposed method is applicable
to other sports when suitable match event data are available.

1. Introduction. Inrecent years, analytics have made a profound impact on sports where
great investments have been made in the “big” professional sports of basketball (the Na-
tional Basketball Association), football (the National Football league), soccer (major Euro-
pean leagues), hockey (the National Hockey League), and baseball (Major League Baseball).
Many teams now have their own analytics staff where decisions are scrutinized across many
areas of the sporting operation including strategy, drafting, salaries, player evaluation, and
marketing. For a survey of some of the work that has been done in sports analytics, see
Albert, Glickman, Swartz, and Koning (2017).

Whereas the National Rugby League (NRL) may be considered a big sport (it has the
greatest television viewership of any sport in Australia), the NRL is underrepresented in
the sports analytics literature. For example, in a search of the archives of the Journal of
Quantitative Analysis in Sports (founded in 2005), the authors were unable to find a single
article devoted to the rugby league. Similarly, in a search of Australian & New Zealand
Journal of Statistics we were only able to find a single article devoted to the rugby league (Lee
(1999)). However, there have been many papers written on the rugby league from the sports
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science perspective and a small sample of these include Glassbrook, Doyle, Alderson, and
Fuller (2019), Booth and Orr (2017), Windt, Gabbett, Ferris, and Khan (2017), Seitz, Rivieére,
de Villarreal, and Haff (2014), King, Jenkins, and Gabbett (2009), and Gabbett (2005).

In an attempt to grow the game, the NRL is adding an analytics focus to the sport (see
www.nrl.com.stats). In particular, to provide additional excitement to the television viewing
experience, the NRL would like to include in-game win probabilities. The idea is that such a
graphic may be presented in a small corner of the screen, and be continually updated as the
game circumstances change. The graphic would be appealing to the NRL fan base and also
to punters. The continual update precludes highly computational techniques, and of course,
the predictions of the in-game win probabilities ought to be accurate.

Prediction of the in-game win probabilities has been investigated in other major sports,
such as basketball, football, and hockey. For example, in basketball, Stern (1994) developed
a Brownian motion model to investigate the score differential process. Gable and Redner
(2012) and Clauset, Kogan and Redner (2015) built computational random walk models
for analyzing the scoring processes in basketball games. Strumbelj and Vralar (2012) and
Vralar, Strumbelj and Kononenko (2016) used possession-based Markov models to simu-
late basketball matches. Data snapshots approaches were developed by Kayhan and Watkins
(2018, 2019). Song, Gao and Shi (2020) obtained in-game predictions by fitting a gamma
process based model for the total points process of basketball. A multiresolution stochastic
process model was proposed by Cervone, D’ Amour, Bornn, and Goldsberry (2016) to quan-
tify the expected possession value, a concept that is similar to the in-game win probability. In
football, Lock and Nettleton (2014) employed a random forest method to provide the in-game
win probability of the National Football League (NFL), whereas Robberechts, Van Haaren
and Davis (2019) introduced a Bayesian statistical model. For the National Hockey League
(NHL), Buttrey, Washburn, and Price (2011) proposed to predict the scoring process by fit-
ting a Poisson process and Pettigrew (2015) used the in-game win probabilities to assess the
offensive productivity of the NHL players. However, the in-game win probability is a new
concept in rugby. In this article, we focus on the NRL matches and propose methods to es-
timate the in-game win probabilities from the perspective of functional data analysis (FDA),
which uses the information of the score differential, the features extracted from the in-game
event data and a unique kickoff win probability of the home team for each match.

The NRL has provided us with four seasons of detailed event data (2016-2019) which we
use to inform the in-game win probabilities. Our approach begins with a conditional proba-
bility formulation where our main interest concerns the evaluation of the in-game posterior
win probability. Specifically, the in-game win probability is expressed by a conditional prob-
ability formulation with components of a unique kickoff win probability of the home team
and conditional joint densities of the score differential and event feature that arises from the
in-game event data conditional on the event that the home team wins or losses the match and
the unique kickoff win probability of the home team. The challenge is the development of an
accurate model for which the posterior probability can be evaluated in real time. The accu-
racy provided by the model relies on the domain knowledge of the sport; hence we search for
data and covariates that have high predictive capability.

A rugby league match is 80 minutes in duration and that circumstances change over the du-
ration of the match. Therefore, we consider the match data as functional data and the in-game
win probability is a function of the time of the match. The distributions that are specified in
our model are determined via FDA. FDA is a relatively new branch of statistics where regres-
sion methods are extended to the study of curves or functions. There is an extensive literature
on FDA. The most popular techniques in FDA include various smoothing methods (e.g. Ram-
say and Silverman (2005), Chapter 3, de Boor (2001) and Wand and Jones (1995)), functional
principal component analysis (e.g., Besse and Ramsay (1986), Bosq (2000), Cardot (2000),
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and Yao, Miiller and Wang (2005a)), functional linear regression model (Hastie and Mal-
lows (1993), Hall and Horowitz (2007), Cardot, Ferraty and Sarda (2003), Yuan and Cai
(2010), and Yao, Miiller and Wang (2005b)), and clustering and classification of functional
data (e.g., James and Sugar (2003), Jacques and Preda (2014), Leng and Miiller (2006), and
Delaigle and Hall (2012)). For a broad theoretical, methodological and practical introduction
to functional data analysis, interested readers are referred to the monographs by Ramsay and
Silverman (2005), Ferraty and Vieu (2006), Ramsay, Hooker and Graves (2009), Horvath and
Kokoszka (2012), Hsing and Eubank (2015), and Kokoszka and Reimherr (2017), and the re-
view papers by Morris (2015) and Wang, Chiou and Miiller (2016) and references therein.
FDA also has many applications in other areas. For instance, Ainsworth, Routledge and Cao
(2011) applied FDA for ecosystem research, in which they studied the relationship between
river flow and salmon abundance. Luo, Cao, Gallagher, and Wiles (2013) estimated the inten-
sity of ward admissions and investigated its effect on emergency department access in public
hospitals by using FDA methods. However, little has been done on applying FDA in sports,
except for Chen and Fan (2018) who investigated the score differential process in basketball
by employing FDA.

In this paper, we apply FDA to evaluate the components in the conditional probability for-
mulation that we use to express the in-game win probabilities. We model the functional fea-
ture extracted from the match event data and score differential processes as sums of smooth
mean functions which are approximated by non parametric smoothing techniques and noises
from Brownian motions. The mean functions are approximated by B-spline basis expansions
with functional parameters. In FDA, a typical application involves the analysis of a sample
of realizations from independent and identically distributed (iid) functions (e.g. Ramsay and
Silverman (2005), Chapter 3.2.4, Cai and Hall (2006) and Hall and Horowitz (2007)). A nov-
elty in our work is that the matches are not iid, because each match is conditional on a unique
kickoff win probability of the home team. Therefore, we propose a weighted least squares
method to estimate the functional parameters, which borrows the information from matches
with similar kickoff win probabilities. The variance and covariance elements are obtained by
the maximum likelihood estimation method. A key feature of our work is that the general
approach for estimating in-game win probabilities may be used in any sport that has event
data. Event data consists of a chronological record of well-defined events that occur during
a match which are relevant to the match and are recorded with a time stamp. The necessary
modifications to alternative sports would involve the determination of the relevant event data
which is predictive and sport specific.

In Section 2, we begin with a discussion of the data that is at our disposal. We then outline
a model from which we obtain the in-game posterior win probability. The model consists
of distributions that are specified via FDA methods. The FDA methodology is explained in
detail. In Section 3, we consider the utilization of the event data to provide good predictions.
There are many potential insights from a game that are relevant. We use the domain knowl-
edge from the rugby league for the specification. We then demonstrate that our estimated
in-game win probabilities change during a match in expected ways. In Section 4, we demon-
strate that our estimated win probabilities are reliable. We conclude with a short discussion
in Section 5.

2. Model development.

2.1. Available Data. The NRL consists of 16 teams and each team plays 24 games during
the regular season. The NRL has graciously given us access to event data for the resultant 769
regular season matches that have taken place during the four seasons 2016-2019. Event data
are detailed match data that go well beyond box score data. With event data, every time an
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event occurs during a match (e.g. field goal, try, tackle, etc.), characteristics of the event are
recorded (e.g. location on the pitch, players involved, time of the match, etc.). In the NRL,
2.1 events are recorded on average per second, and there are up to 410 characteristics that
can be recorded as an event. The events and characteristics are obtained through cameras
and optical recognition software that carry out the data collection process in real time. Our
dataset is a huge matrix with rows corresponding to events and columns corresponding to
characteristics. Our dataset has 8,144,905 events (rows) obtained over the four seasons.

An important component of our work which is developed in Section 3 is the determination
of relevant event data to inform the in-game win probabilities. We propose several choices of
the event data that assist us to inform the in-game win probabilities. Specifically, we choose
the event feature, missed tackle differential, to illustrate the proposed method. In our devel-
opment and without loss of generality, the in-game win probabilities and data will refer to
the home team.

For the time being, for a particular match, we will refer to X (¢) as a random functional
feature that arises from the event data relative to the home team defined on a time interval
[0, 80] minutes. Note that X (¢) may be multivariate. For example, it is obvious that the aver-
age field position by the home team is a measure of dominance and it may be a good predictor
of the home team’s chance of winning the match.

Another important predictor of the in-game win probability of the home team is the current
score differential. We will refer to D(t) as the number of points by which the home team is
defeating the road team at time ¢. Note that D(¢) < 0 indicates that the road team is winning
by |D(t)| points at time ¢.

Finally, another important predictor of the in-game win probability of the home team
is a measure of its strength relative to the road team. This is not something immediately
available from the event data, and therefore we sourced an additional dataset. The website
http://www.aussportsbetting.com/data/historical-nrl-results-and-odds-data/ gives closing bet-
ting odds of NRL matches immediately prior to kickoff. A nice feature of the betting odds is
that they take into account everything that is relevant to a match including home team advan-
tage, injuries, travel, etc. Betting odds are also known to be efficient; otherwise, sportsbooks
would not exist. Therefore, we can rely on the betting odds as providing reliable information
concerning the win-probability of the home team at the time of kickoff.

Betting odds arise in various formats, and we will refer to odds provided in the European
format. Odds o, on the home team indicate that a winning bet of $1 on the home team will
result in a payout of $0;,. Clearly, o, > 1. Similarly, odds o, on the road team indicate that a
winning bet of $1 on the road team will result in a payout of $o,.. We ignore the rare event
that a match can end in a draw as this does not affect the subsequent calculations. Draws
occur roughly 4.94% of the time in the NRL. Now, some simple probability calculations
involving expectations yield that the probability of the home team winning is p, = 1/0p,
and the probability of the road team winning is p, = 1/0,. However, these calculations do
not take into account the vigorish (i.e. the expected profit) by the sportsbook, and therefore
pn + pr > 1. We therefore remove the vigorish and set the kickoff probability that the home
team wins the match as po = pp/(pn + pr)-

Therefore, to review, the inputs to our model which we use to estimate in-game win prob-
abilities for the home team are given by:

X (t) = functional feature extracted from the event data relative to the home
1) team at time ¢
D(t) = score differential in favour of the home team at time ¢
po = kickoff probability of the home team winning based on sportsbook odds
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2.2. Model overview. In this subsection, we present a model based on the inputs given
by (1). We let W denote the event that the home team wins the match and let W denote the
event that the home team does not win the match, and it is the posterior probability of W
which is our quantity of interest. We therefore obtain the expression

_ _ _ £ (2(£).4(8)| W.po) Prob(W [po)
Prob(W| X () =z (t), D(t) = d(1),P0) = 55 G Wome) Prob(Wlpe) + F(a(0)d(0)Wipa) Prob(Wipo)
2)

— f(=(®),d(®)[Wipo) po__
f(@(1),d()[W,po) po + f(2(t),d(t)|W,po) (1—po) ’
where f(x(t),d(t) | W, po) represents the conditional joint density of X (¢) and D(t) given
W and po , and f(z(t),d(t) | W,po) represents the conditional joint density of X (¢) and
D(t) given W and py. We observe that (2) is a simple expression for the purposes of calcula-
tion. However, for the application to television broadcasts, we emphasize that it is necessary
that the component distributions in (2) need to be evaluated instantaneously.

2.3. Estimation of model components using FDA. This is the most technical portion of
the paper where an atypical FDA structure is introduced and estimation techniques are de-
veloped to determine the conditional joint densities f(x(t),d(t) | W,po) and f(X (¢), D(t) |
W, po) in (2). We illustrate the methodology with univariate X (¢) although the methods can
be extended to multivariate X (¢). This subsection may be skimmed while still retaining the
overall intent of the paper.

We begin by focusing on the f(X(t), D(t) | W,po) term where f(X (t), D(t) | W,po) is
handled in a similar fashion. Given W and pg, we assume that

X(t) = px(t,W,po) +ex(t,W),
D(t) = pup(t,W,po) + ep(t, W),

where px (t, W, pg) is the expected value of the functional feature X (¢) given the home team
winning and having a kickoff win probability of py. Similarly, pp(t, W, po) is the expected
value of the score differential D(t¢) given the home team winning and having a kickoff win
probability of pg. {ex (t,W)}; and {ep(t, W)}, are error processes.

For ease of notation, we use ex (¢) and ep(t) to represent ex (¢, W) and ep(t, W) respec-
tively. In Section 3, we consider various choices for X (¢) that affect Var(ex(t)) and the
resultant estimation procedure. Suppose for now that ey (t) is a random variable that consists
of independent incremental contributions up to time ¢. Therefore, we assume that ex (¢) has
mean 0 and variance tag(. However, we note that the following theory may be modified to
accommodate other variance assumptions such as a constant variance. For ep (), we also as-
sume that it is based on a white noise process where we recognize that the score differential
consists of incremental contributions during the match up to time ¢. Therefore, assuming that
these contributions are independent and identically distributed, it is appropriate that ep(¢)
have mean 0 and variance ta%. These assumptions are equivalent to assuming that e x (¢) and
ep(t) are Brownian motion processes. We justify the normality assumptions in the supple-
mentary document. The correlation between X (t) and D(t) is assumed to be invariant of ¢
and let p = Corr(X (t), D(t)). Then, at time ¢, the noises are distributed as

ex(t)
(3) (6)/;@)) ~ Normal (0,{K),

where 0 = (0,0)7 and

K — ag( pPOXOD
pPOXOD 0% '
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For different time points ¢ and ¢/, Cov(ex (t),ex(t')) = min{t,#'}o%, Cov(ep(t),ep(t')) =
min{t,#'}o%, and Cov(ex (t),ep(t')) = min{t, ¥ }poxop.

We further assume that px (t, W, pg) and pup(t, W, pp) are continuous smooth functions
and we approximate these functions by linear combinations of basis functions as follows

K
x (&, W,po) = > ar(W,po)br(t),

) bt
pp(t, W,po) = kZ (W, po)bi (1),

=1

where by, are predetermined basis functions. Up until this point, except for the variance as-
sumptions associated with the noise terms, this is a standard setup in FDA applications (see,
Chapter 3 in Ramsay and Silverman (2005), for example).

With our initial concentration on the specification of f(x(t),d(t) | W, pg), we restrict our
data to matches where the home team has won (i.e. W is observed). Assume that we have
functional data {(X;(t;;), Di(tij)) :i=1,...,N;j=1,...,n;}. We also have the kickoff
win probability p;o associated with the ith match.

An aspect of our problem that makes it different from a typical FDA application is that
the functional data are not iid. Specifically, the functional distribution of the ith match is
conditional on p;g (the kickoff win probability of the home team in the ¢th match). Suppose
that £;1 <t <- - <tip, and let

tivtin tin ... ta
tittia tia ... ti2
o= |littiatiz ... ti3

| ti1 tiz tiz - .. tin,

Therefore, to address the estimation of the a’s and ¢’s in (4), we minimize the functions

H,(a) = ZGXP{ =(popio). po) } (Xi —-Bia)" G;' (X; — Bia)
)
H(c) = zexp{ e L (D, - Bie) H; ! (D; - Bic)

where a = (a1 (W, po),...,ax(W,po))T, ¢ = (c1(W,po),...,cx(W,po))T, X; is an n; x 1
vector with the jth element X;(¢;;), D; is an n; x 1 vector with the jth element D;(t;;), B;
is the n; x K matrix with the (7, k)th element by (t;;), and G; = H; = 3;0. In (5), v >0 is a
tuning parameter. The term exp { —(po — pio)?/~ } assigns more weight to matches that have
similar kickoff win probabilities to the generic value pg.

The proposed estimation procedure is based on the minimization of the functions H, and
H.. What makes the equations in (5) unusual is that E(X;(t;;)|W,pio) and E(D;(t:;)|W, pio)
do not equal the specified expressions S5 ay (W, po)by(ti;) and SO0 (W, po)by(tij).
Equality would only exist if the X; and D; were observed under the generic value pg, where
again, we emphasize that the functional data from different matches don’t have the same
conditional distribution because each match is conditional on a unique kickoff win proba-
bility p;o. This provides the motivation for the exponential terms; we assign more weight to
observations for which the generic pg is closer to the observed p;g.
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With a little bit of work, it can be shown that for fixed -y, the minimization of H, and H.
yields the analytic expressions

N -1/ N
a= <z viBiTGi_lB,) <2 viB?G;1Xi> :

(6) i=1 i=1
N -1/ N

&= ( v;BF HilBi> <Z viBZTHilDl) :
i=1 =1

where v; = v;(po,7) = exp { —(po — pi0)*/7}.

With estimated a’s and ¢’s, we now turn to more traditional estimation procedures. Let
air, = ap (W, pio) and é;, = ¢ (W, pio). Based on the data and modelling assumptions, the
resulting likelihood is given by

N
L(ox,op,p|W,po) = [ J(2m) ™™

i=1

- X _ [ Hix
)l

with Hix = (Z azk:bk‘( 11) Z azkbk( in; ))T7 KD = (Z Czkbk( zl) Z Czk:bk:( in; ))T,

and X; is the Kronecker product of K and X, denoted by K ® ;0. The pararneters ox,
op, and p appear in matrix K. The likelihood can then be maximized to provide estimates

1 1 _
3| 2eXP{—§(Wi - /J’i)TEi I(Wz’ — )},

where

&X = D:vx / Vo,
(7) 6% = Daq | vo,

)= D:L"d/ V Dz*ded 5

where
v =0 i,
vV (v _Ba) e-l(X _Ba
DJ»’»T - qu:l XZ - Bzaz Gz XZ — Bzal s
_\N <\ o1 o
Dyq = Zi:1 X; —B;a;) X, (D; — B¢ ),
T
Dia =%, (D~ Bi&) H;'(D: - Bid),

with &; = (a;1,...,a;x)7, & = (é1,...,¢x ). Finally, the parameter 7 is tuned as described
in Section 3.

Putting this all together, suppose that there is a new match [ with a kickoff win probability
pio, and we observe event data x;(¢) and score differential d;(¢) at time ¢. Then

(®)

Fla(t), di(t)|W, pro) = - Al — exp{ S

2rtoxop

(t)
[<f€l EZ: 1 (W, pio) b (t ))2

2p (931(15) - f: &k(VVaPZO)bk(t)> <dl(t) - f: 6k(mpzo)bk(t)>
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Similarly, we can obtain F(a(t), dy(t)|W, pyo) by using the data of matches where the home
team has lost (i.e. W is observed). Then by (2), we can simply estimate the posterior in-game
win probability at time ¢ for match .

2.4. In-Game win probabilities for the second half of the match. The method proposed
in Section 2.3, which we call the split FDA method, is used to estimate the in-game win
probabilities in the first half of the match. By splitting the matches based on whether the
home team wins or loses the match and using additional information provided by the func-
tional feature X extracted from the event data, the split FDA method is expected to provide
good predictions of the in-game win probabilities in the first half of the match. However, the
method may not provide reasonable estimates toward the end of the match. The estimated
in-game win probability at time ¢ = 80 using the split FDA method may not be exactly 1
when the home team has won (W) or 0 when the home team has lost (/). Moreover, the
score differential D(¢) given that the home team won or lost is not normally distributed when
the match approaches the end. For example, Figure 1 displays the histograms of the score
differentials at time ¢ = 75 for the matches that the home teams won (left) and lost (right) in
the 2016 - 2018 seasons. We can observe that the distributions for D(75) given either W or
W are skewed.

50

Frequency
30
Frequency
0 10 20 30 40 50 60
1

: | ﬂ
o .
[ T T T T T 1 [ I I I I I 1
60 40 20 0 20 40 60 -60 40 20 0 20 40 60
D(75) D(75)

Fig 1: Left panel: histogram of the score differentials at ¢ = 75 for the 311 matches in the
training data (2016 - 2018 seasons) that the home teams won. Right panel: histogram of the
score differentials at ¢ = 75 for the 241 matches in the training data (2016 - 2018 seasons)
that the home teams lost.

To overcome the above problems, we consider a method which does not split the matches
into matches that home teams win and matches that home teams lose. We call this method the
joint FDA method. The joint FDA method uses only the score differentials and kickoff win
probabilities as inputs since the score differential is the most dominant factor that impacts the
in-game win probabilities towards the end of a match. We assume that the score differential
process follows a Brownian motion model with independent increments, which implies that
D(80) — D(t) is independent of D(t). Therefore, we have

o) Prob(W | D(t) = d(1), po) = Prob(D(80) > 0 | D(t) = d(t), po)
— Prob(D(80) — D(t) > —d(t)|po).

We assume that given pg

D(t) = up(t,po) + €Djoint (1),
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where pp(t, po) is the expected value of the score differential D(t) with a kickoff win prob-
ability po and €pjoint(t) is the noise with mean 0 and variance ta%joint. We approximate

up(t,po) by Zle ¢ (po)br(t). We assume that €pjoint(t) can be modeled as a Brown-
ian motion process. Since the Brownian motion model assumes independent increments,
Cov(€Dpjoint (t); €Djoint (t')) = min{t, t’ }0'2Dj0int for different time points ¢ and ¢'. Therefore,

D(SO) — D(t) ~ Normal (,UfAD (t’pl)))’ (80 - t)o-%)joint)

where puap(t,po) = Zle ¢ (po) (bx(80) — by (t)). We estimate ¢;’s and obtain & pjeint by
the relevant parts of (6) - (8) using all matches instead of restricting to the matches that the
home teams win. Then for a new match [ with a kickoff win probability p;y and observed
score differential d;(t) at time ¢, (9) yields

Prob(W | Dy(t) = di(t), pio) = @ (dl(t) + ﬂAD(t,plo)> |

Vv 80—t 6'Djoint

where jiap (t,p10) = Y1, ér(po) (br(80) — by(t)) and @ represents the cumulative distribu-
tion function of the standardized normal distribution. Compared to the split FDA method, the
joint FDA method is more sensitive to the scoring events (see Section 4 for more details).

Now let pgpiit () and pjoint (t) denote the in-game win probabilities at time ¢ obtained by
the split FDA method and joint FDA method respectively. Let w(t) = 55, then we use
the weighted average p(t) = w(t)pspiit(t) + (1 — w(t))Pjoint (t) to estimate the in-game win
probability at time ¢ in the second half of the match when 40 < ¢ < 80.

3. Results. We begin by considering appropriate choices for the functional match event
feature X (¢). When a game is being viewed, there are often indications that one of the teams
is gaining an upper hand in the match. The variable X (¢) is chosen to quantitatively reflect
this sort of dominance as a predictor of winning the match. In Table 1, we propose several
choices that are intended to reflect dominance by the home team. All of the variables pre-
sented in Table 1 are recorded with respect to the home team.

TABLE 1
Potential choices of event data where all variables are measured with respect to the home team and larger values
denote increasing superiority.

Event feature | Description

X1(t) tackle differential up to time ¢

Xo(t) tackle differential during the most recent 10 minutes at time ¢

X3(t) missed tackle differential up to time ¢

Xa(t) missed tackle differential during the most recent 10 minutes at time ¢

For clarity, a missed tackle is one where a player on the team of interest may have been
tackled, but the tackle was unsuccessful. Therefore, the missed tackle differential with respect
to the home team is favourable to the home team if the variable is positive. Now, we are
not suggesting that the variables proposed in Table 1 are the best choices. For example,
Parmar et al. (2017) investigated key performance indicators in the professional rugby league.
However, the variables in Table 1 are easy to calculate based on live match data. We imagine
that experts with detailed domain knowledge of the rugby league may be able to propose
improved variables from the point of view of prediction. However, to illustrate the proposed
methods, we will hereafter use the variable X3(¢) in Table 1 as the event data of interest. For
ease of notation, we denote X3(t) as X (¢). We also emphasize that the choice of the event
data impacts the modelling distribution (3) and the estimation equations given by (5)-(8).
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The basis functions by (t) introduced in (4) are cubic B-splines. For details on B-spline
approximation, see de Boor (2001). Specifically, we choose 9 equally spaced knots over the
interval [0, 80] minutes and this results in K = 11 cubic B-spline basis functions as depicted
in Figure 2. This selection of knots and splines leads to flexible shapes that can be used to
express px (t, W,po) and up(t, W, pg) in (4) and pp(t,po) in Section 2.4.

1.0

0.8

Basis function
0.6

0.4

0.2

0.0

Minute

Fig 2: Cubic B-spline basis functions defined on 9 equally spaced knots over the interval
[0, 80] minutes.

Before proceeding to estimation, it is good to have a sense of the data. In Table 2 and 3, we
provide descriptive statistics of data collected from 731 NRL regular-season matches from
2016 — 2019. We observe that there is indeed a home-field advantage as the average score
differential in favour of the home team is 1.8 points. We also observe that the average missed
tackle differential is positive which is also evidence of the home team advantage. The score
differential curves and the missed tackle differential curves for the 731 matches are plotted
in Figures 3 and 4, respectively. On average, it seems that both the differential and missed
tackle differential are linear with respect to the time of the match. This is consistent with a
process whereby the better team separates itself from the weaker team in a consistent manner
over the course of a match.

TABLE 2

Descriptive statistics of the scores corresponding to all 731 matches from the four regular seasons
(2016 — 2019) of the NRL.

Variable Min Value Max Value Average Std Dev
Home Team Score 0 64 21.1 10.8
Road Team Score 0 62 19.2 10.1
Score Differential wrt Home Team -62 58 1.8 16.9
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TABLE 3
Descriptive statistics of the missed tackles (at the end of the match) corresponding to all 731 matches from the
Sfour regular seasons (2016 — 2019) of the NRL.

Variable Min Value Max Value Average Std Dev
Home Team Missed Tackle 8 48 23.5 6.7
Road Team Missed Tackle 8 44 22.5 6.2
Missed Tackle Differential wrt Home Team -31 34 1.0 9.6

Score differential

T T T T T
0 20 40 60 80

Minute

Fig 3: The score differential curves for all the 731 matches from the four regular seasons
(2016 — 2019) of the NRL.

Having specified the basis functions, the procedure in Section 2.3 requires the estimation
of the parameters oy, op, and p as specified in the multivariate normal distribution (3). We
first restrict estimation to data where the home team has won (i.e. W) and we note that in the
training data set (matches in 2016 — 2018 seasons) there are 311 matches that fit this criterion.
Based on the specification of the tuning parameter v = 0.01, the chosen basis functions and
the determination of the a; and ¢j, terms, we obtain

Gx =1.33,
6p = 2.06,
5p=021.

These estimates appear to be sensible in terms of the descriptive statistics provided in Table 2
and 3. In particular, we note a positive correlation p which suggests that X (¢) and D(¢) tend
to work in tandem. o
Using the training data (2016 — 2018 seasons) where the home team has not won (i.e. W),
there are 241 matches, and we similarly obtain
ox =1.31,
6p = 2.00,

p=0.22.
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Missed tackle differential

Minute

Fig 4: The missed tackle differential curves for all the 731 matches from the four regular
seasons (2016 — 2019) of the NRL.

When we use all the 552 matches (i.e. W or W) in the training data set (2016 — 2018
seasons), we obtain

& Djoint = 1.63.

Our estimation procedure involves a tuning parameter . We select the tuning parameter by
fivefold cross-validation. Specifically, we randomly split the matches in 2016 — 2018 seasons
into five groups. For each unique group, we take it as a holdout test data set, On the remaining
groups, for a particular 7, we fit the model parameters (a,c,0x,0p, p) using the split FDA
method and (¢, 0 pjoint) using the joint FDA method. We then apply the split FDA method and
joint FDA method to estimate the home team win probability at time ¢ on the hold out data set.
If, for a given match at time ¢, the estimated in-game win probability is larger (smaller) than
0.5 and the home team eventually wins (loses) the match, then the prediction is considered
to be correct. We repeat this procedure over all matches in the test set and all times to give
the overall correct prediction rate. For both the split FDA and joint FDA methods, the choice
~v = 0.01 yields the highest average overall correct prediction rate over all the five groups. In
Figure 5, we show the estimated mean functions of the X and D processes with v = 0.01
and various kickoff probabilities of the home team winning py. The top and middle panels
present the estimated mean functions of X and D using the split FDA method. We observe
that the plots exhibit the expected behaviors. For example, in matches where the home team
wins, mean differentials in both X and D increase as the game progresses. When a curve is
wiggly, we attribute this to lack of data. For example, in the top right plot where pg = 0.8,
there are not many matches where the home team is heavily favored and they lose. The
bottom panel of Figure 5 shows that for the joint FDA method, in general, the mean score
differentials increase when the kickoff win probability is larger than 0.5 (i.e. pg = 0.6 and
0.8) and decrease when pg = 0.2 and 0.4.

4. Model validation. Obviously, there is a random component to sport and this is part
of its appeal. If matches were perfectly predictable, then there would be no point in holding
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Fig 5: Top panel: estimated /ix (t,W,po) and fix(¢t,W,po) using the split FDA method.
Middle panel: estimated jip (¢, W, po) and jip(t, W, po) using the split FDA method. Bottom
panel: estimated /ip (¢, po) using the joint FDA method.

sporting competitions. Therefore, our investigation in this section involves an assessment of
whether our predictions are reasonable - they cannot and should not be perfect predictions.

We should not use the same data to both fit models and carry out the model assessment.
We therefore fit our model using the first three seasons 2016 — 2018 of the event data and use
the fitted model to predict the match outcomes in the 2019 season for which there are 179
matches. We then compare the actual 2019 match outcomes with the predicted outcomes.

In Figure 6, we investigate the predictive capability of the split FDA method (dashed
curve), joint FDA method (dotted curve), and the proposed weighted method (solid curve).
We consider the estimated probability that the home team wins at times ¢ =1,...,75 for
the 2019 data. It is sensible to only consider predictions up to the 75th minute as many
sportsbooks terminate in-match betting towards the end of matches. A reason for this is that
possession of the ball near the end of a close match is critical and becomes more important
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than both X and D in the determination of fair betting odds. Punters could exploit this situa-
tion. If an estimated probability exceeds 0.5, then this indicates a prediction in favour of the
home team. At time ¢, we compare the 2019 match predictions with the actual match results
and obtain the correct prediction rate. As one would expect, Figure 6 demonstrates that the
correct prediction rates obtained by all methods improve as matches progress in time. This
figure shows that the split FDA method provides higher correct prediction rates than the joint
FDA method for the first 40 minutes of the game, whereas the joint FDA method performs
better in the second half especially when the game approaches the end. We observe that the
methods yield good results exceeding 80% accuracy by the 55th minute.

o ]
- ——  Weighted
- - - Split FDA
o g i R Joint FDA
©
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©
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Fig 6: The correct prediction rates for the 2019 NRL season obtained by the split FDA method
(dashed curve), the joint FDA method (dotted curve), and the proposed weighted method
(solid curve). Note that the proposed weighted method has the same result as the split FDA
method in the first 40 minutes of the match.

To investigate whether our estimated in-game win probabilities are reliable, we randomly
select four matches from the 2019 season where the home teams won. In Figure 7, the solid
curves are the predicted in-game win probabilities by the proposed method annotated with
scoring events (dashed vertical lines). Recall that the proposed method applies the split FDA
method in the first half of the match, whereas in the second half of the match, a weighted av-
erage of the estimates obtained by the split FDA method and the joint FDA method is used.
In comparison, we also include the estimated in-game win probabilities by the split FDA
method and joint FDA method. We can see that the joint FDA method is more sensitive to
scoring events. For example, the top right plot shows a match that the home team won. When
the home team scored at the 7th minute, the in-game probability obtained by the joint FDA
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method increases dramatically, whereas the proposed method is less sensitive to the scor-
ing event. Sensibly, we observe that the predicted win probabilities are impacted by scoring
(discontinuous jumps).
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Fig 7: Predicted instantaneous in-game win probabilities by the proposed method (solid
curves), the split FDA method (long-dashed curves), and the joint FDA method (short-dashed
curves) for four randomly selected matches from the 2019 season where the home team won.
The dashed horizontal lines indicate the values of 0, 0.5, and 1. The dashed vertical lines
indicate the times when the score changed.

We also compare the proposed weighted method to the Brownian motion model that was
proposed by Stern (1994) to study the scoring process of basketball. Stern (1994) estimated
the drift and variance parameters of the Brownian motion model by treating the game out-
come as a binary response and maximizing the profit regression likelihood. We use “BMM"
to represent the Brownian motion model proposed by Stern (1994). One limitation of the
BMM method is that the probability that a home team wins the match when it leads d points
at time ¢ is assumed to be the same for any basketball game. Figure 8 (a) compares the cor-
rect prediction rates obtained by the proposed method (solid curve) and the BMM approach
(dashed curve). It is observed that our proposed method outperforms the BMM approach in
the first half of the match. In Figure 8 (b), we present the predicted in-game probabilities by
the proposed method and the BMM approach. The results indicate that the BMM approach is
very sensitive to the scoring events. Because the BMM method does not use the information
of the betting odds, the predicted in-game probabilities at time O are 0.6 for all matches in
2019.

To see how X (t) impacts the estimation procedure, we consider two scenarios. In Scenario
I, the split FDA method predicts the in-game win probabilities using both the event data X
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Fig 8: (a) The correct prediction rates for the 2019 NRL season obtained by the proposed
weighted method (solid curve) and the BMM approach (dashed curve). (b) Predicted instan-
taneous in-game win probabilities by the proposed weighted method (solid curves) and the
BMM approach (dashed curves) for one randomly selected match from the 2019 season. The
dashed horizontal lines indicate the values of 0, 0.5, and 1. The dashed vertical lines indicate
the times when the score changed.

and the score differential D, whereas in Scenario II, the split FDA method predicts the in-
game win probabilities using only the score differential D. For both scenarios, the joint FDA
method uses only the score differentials. We select a match played on 6th April 2019 between
the Melbourne Storm (home) and the Canterbury-Bankstown Bulldogs. The half time score
is 6 (Storm) - 12 (Bulldogs) and the full time score is 18 (Storm) - 16 (Bulldogs). More de-
tails about the match can be found at https://www.nrl.com/draw/nrl-premiership/2019/round-
4/storm-v-bulldogs/.

In Figure 9, we present the predicted instantaneous in-game win probabilities for the match
under Scenario I and Scenario II together with the score differentials and missed tackle differ-
entials. The solid curve in Figure 9 represents the predictions obtained using Scenario I, and
the dotted curve represents the predictions based on Scenario II. The kickoff win probability
po = 0.85 indicates that the Storm was heavily favored. We can see from Figure 9 that the
road team scored on the 6th minute of the match, and after that, the predicted in-game win
probabilities based on D only (Scenario II) decreased to below 0.8. In contrast, the missed
tackle differentials keep positive for most of the time in the first half of the match. This in-
dicates that even though the Storm were trailing, there was reason to be hopeful that they
would turn the match around. We observe that the predicted in-game win probabilities based
on Scenario I are greater than those based on Scenario II for the entire game except for the
short time interval between the 24th and 32nd minute. Clearly, the example demonstrates the
added value in the event data X (¢) through the superiority of Scenario I over Scenario II.

5. Discussion. We have developed a model that provides instantaneous in-game win
probabilities for the National Rugby League. The model has distributional components that
are informed by FDA techniques.

There are various future research directions associated with our work. First, the approach
is general and is applicable to other sports whenever suitable event data are available. Second,
there are obvious gambling questions that may be explored with respect to our predictions.
Finally, the choice of the functional event feature X (¢) impacts our estimation procedure,
and we have focused on the missed tackle differential. We believe that experts with detailed
domain knowledge of the rugby league may be able to propose better predictive choices for
X(t). Although we illustrate the use of univariate X (¢), our methods can be extended to
multivariate settings.
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Fig 9: Predicted instantaneous in-game win probabilities for the match Storm versus Bulldogs
on 6th April 2019 by Scenario I ( ) and Scenario IT (- ). The dots indicate the score
differentials of the match. The bars indicate the missed tackle differentials of the match.

Supplementary Document. The supplementary document contains the numerical re-
sults for justification of the normality assumption.
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