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Abstract

Using ShotLink data that records information on every stroke taken on the PGA Tour,

this paper introduces a new metric to assess putting. The methodology is based on

ideas from spatial statistics where a spatial map of each green is constructed. The

spatial map provides estimates of the expected number of putts from various green

locations. The difficulty of a putt is a function of both its distance to the hole and

its direction. A golfer’s actual performance can then be assessed against the expected

number of putts.
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1 INTRODUCTION

The world of sport is littered with statistics. For example, in baseball alone, statistics

are kept on batting average, home run totals, runs batted in, slugging percentage, on-base

percentage, earned run average, innings pitched, wins, and fielding percentage to name just

a few of the more prominent metrics.

Whereas many of the traditional statistics are intuitive, most provide only a partial

snapshot of performance, and some statistics can even be misleading. For example, in cricket,

the batting statistic known as strike rate fails to account for the importance of dismissals

(Beaudoin and Swartz 2003). As another example, a lofty save percentage in baseball may

mask the favourable circumstances in which some pitchers enter a game.

With the proliferation of data and the advent of computers, more complex statistics have

been proposed which attempt to address critical aspects of performance. For example, the

website www.82games.com provides in-depth analyses and statistics related to the National

Basketball Association (NBA). Amongst the advanced statistics are a class of statistics that

propose to measure the value or contribution of a player or an event relative to what is

expected. We refer to these as relative-value statistics. For example, in baseball the VORP

statistic (value over replacement player) attempts to characterize how much a batter con-

tributes offensively or how much a pitcher contributes defensively to the team in comparison

to a replacement-level player (Woolner 2002). The comparison is made in terms of runs,

the quantity whose value is well understood. VORP has proven to be a useful measure in

market evaluation. As another example, Chapter 15 of Oliver (2004) discusses relative-value

statistics for a given player in the NBA based on team performance with and without the

player in the lineup.

In the game of golf, there is a well-known expression that “you drive for show and you

putt for dough”. Although the sentiment may not be entirely true, the importance of putting

2



should not be understated. In golf, putting may be viewed as a game within a game. Once a

golfer reaches the green (the short grass where the hole is located), a specialized club known as

a putter is used to stroke the ball into the hole. Naturally, the fewer strokes taken, the better.

We note that greens have varying rounded shapes and sizes, where 5,000 square feet may

be considered average. With respect to putting, the traditional performance statistic that

is commonly reported is the number of putts per round. On the PGA (Professional Golfers’

Association) Tour, it is generally felt that more than 30 putts per round is an indication

of substandard putting performance. However, the total number of putts per round fails to

account for the difficulty of putts. For example, a golfer with a high percentage of greens in

regulation1 is likely to face more difficult putts than a golfer with a low percentage of greens

in regulation. Moreover, a golfer who “chips-in” from off the green will be credited with zero

putts. This provides an illusion of good putting with respect to the total number of putts

per round statistic since the golfer did not putt.

The inadequacy of the putts per round statistic has been recognized, and in 2011, the

PGA Tour began reporting the strokes gained-putting statistic. The strokes gained-putting

measure falls into the class of relative-value statistics as it attempts to quantify how many

strokes a PGA golfer saves relative to other PGA golfers. The statistic is typically reported

in shots per round although it is also reported in total putts over a season. For example, in

2011, Luke Donald was the top putter with 0.844 strokes gained per round. Last and number

118 on the list was J.B. Holmes with -0.096 strokes gained per round (or 0.096 strokes lost

per round). The key idea behind the strokes gained-putting statistic is that it considers the

distance of each initial putt on a green and the expected number of putts that a typical PGA

golfer takes from that distance. The methodology was initially developed by Broadie (2008)

and was subsequently developed by Fearing, Acimovic and Graves (2011). The calculation

1Reaching a par 3/4/5 hole in regulation indicates that a golfer has landed on the green in 1/2/3 shots.

3



of the strokes gained-putting statistic has been facilitated by ShotLink data which records

information on every shot taken on the PGA Tour.

In this paper, we propose an enhanced relative-value statistic for putting on the PGA

Tour. In addition to taking the distance of a putt into account, we consider additional

properties related to the green. For example, it is well-known that a straight uphill putt from

10 feet is easier than an undulating downhill putt from 10 feet. The statistic which we develop

uses concepts from the field of spatial statistics. Spatial maps are constructed which provide

estimates of the expected number of putts from various green locations. The particular

idiosyncrasies of our application result in a novel spatial model that borrows features from

both geostatistical models and lattice models as categorized by Cressie (1993). In addition,

our spatial model is Bayesian which requires the specification of prior distributions. Bayesian

spatial models are considered by Banerjee, Carlin and Gelfand (2003). Given estimates of

the expected number of putts from various green locations, we can assess performance by

comparing the actual number of putts with the expected number of putts. Our methodology

also relies on the availability of ShotLink data.

There have been several recent attempts at using spatial statistics in sports analytics. For

example, Shuckers (2011) considers the development of statistics for assessing goaltending

based on shot data in the National Hockey League (NHL). In the NBA, shot data based on

missile tracking cameras are being used to create spatial maps of preferred shooting locations

for individual players (Wilson 2012). Neither of these approaches use informative priors that

take the physical layout of the ice/court into account.

Related to our work is a paper by Jensen, Shirley and Wyner (2009) which develops a

Bayesian spatial model for the analysis of fielding in Major League Baseball. Whereas our

spatial surface is a green with the number of putts observed (1,2,3) from various locations,

they consider a field with binary outcomes corresponding to whether catches were made.
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In our application, the relevant spatial features are the distance and the direction to the

hole whereas Jensen, Shirley and Wyner (2009) include covariates such as the velocity of the

batted ball, the distance travelled by the ball and the direction of travel by the fielder. One

of the major differences between the two analyses is that we model a typical PGA Tour golfer

and then compare differences between expected results for the typical player and observed

results for a given player. On the other hand, Jensen, Shirley and Wyner (2009) model each

fielder individually with a fielder effect.

We also remark on the paper by Reich, Hodges, Carlin and Reich (2006) which is related

to our work. Here, the authors consider various Bayesian spatial analyses of basketball shot

data corresponding to Sam Cassell during the 2003-2004 NBA season. As in our work, they

take distance and shooting angle (from the basket) into account. In one of their models,

outcomes (i.e. misses and makes) corresponding to shooting attempts are modeled using

Bayesian logistic regression where the court is divided into 122 regions. Reich et al. (2006)

spatially smooth regression parameters using CAR (conditionally autoregressive) prior dis-

tributions. Interesting covariates are considered such as the presence/absence of specific

players on the court.

In section 2, we develop a novel Bayesian spatial statistics model where we take various

features of putting into account. In particular, we propose a prior distribution which implies

that a putt on a given line to the hole should have a greater probability of being made than a

longer putt along the same line. As our model is non-trivial, the computations rely on Markov

chain Monte Carlo (MCMC) methodology for simulation from the posterior distribution. An

overview of the computations is provided in section 3 where Metropolis within Gibbs steps

are utilized. We then create a spatial map for the number of expected putts taken from each

putting location with respect to sample data from the 2012 Honda Classic. Comparisons

are made with the intermediate calculations used in the strokes gained-putting statistic. As
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expected, we observe that factors other than distance play a role in the difficulty of putts.

We conclude with a discussion of future research directions in section 4.

2 SPATIAL STATISTICS MODELS

In a Bayesian hierarchical setting, modeling is often facilitated by thinking about data and

parameters conditionally, one level of the hierarchy at a time. In our application, we wish

to create a spatial map which provides estimates of the expected number of putts by PGA

Tour golfers from each of the realized putting locations.

Prior to describing the modeling details, our modeling framework begins with the spec-

ification of the distribution of the number of putts (the data) taken from various initial

locations on the green. The distribution of the number of putts corresponding to the ith

putting location is characterized by a parameter λi. The parameter λi is an unknown and is

a quantity that we wish to estimate. There are aspects of the λi for which we have intuition,

and we assign prior distributions to the λi based on our physical understanding of putting.

For example, we would like putts i and j to have similar difficulty if they are spatially near

one another. With λi and λj strongly correlated apriori, “learning” about parameter λi bor-

rows from the learning of λj, and vice-versa. We would also like to assign a prior distribution

whereby λi and λj are “close” if the corresponding putts are of similar length but perhaps

from different directions. We are essentially smoothing the parameters spatially. In assign-

ing prior distributions to the λi that take into account our prior knowledge, there remain

unknowns in these distributions which are similarly characterized by secondary parameters

which are sometimes referred to as hyperparameters. These hyperparameters themselves

have distributions and we assign prior distributions to these quantities. The specification

of distributions on the various layers of parameters where we make use of our underlying
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knowledge is referred to as hierarchical modeling.

Using ShotLink data, consider a particular green in a particular round of a tournament.

The data consist of Z1, . . . , Zn where Zi is the number of putts that it takes from the ith

putting location, i = 1, . . . , n. The ith putting location corresponds to where the ith golfer’s

shot landed on the green. However, we emphasize that the subscript i used in modeling

refers to the location and the characteristics of the location, and not the characteristics of

the ith golfer. For the purposes of modeling, all PGA golfers are assumed to have the same

putting ability. We are also able to access the ShotLink data to extract useful covariates

(xi, yi), i = 1, . . . , n. Here, (xi, yi) are the Cartesian coordinates measured in feet of the ith

putting location where the pin (i.e. hole) is defined as the origin. For convenience, we can

also transform (xi, yi) to its polar representation (ri, θi). In our initial step of modeling, we

first assume Z1, . . . , Zn independent with

Zi − 1 ∼ Poisson(exp{λi(ri, θi)}) (1)

for i = 1, . . . , n. In (1), the expected number of putts E(Zi) = 1 + eλi sensibly depends

on the putting location given by (ri, θi). Therefore, we interpret λi as the difficulty of the

putting location (ri, θi) for PGA golfers where larger values of λi correspond to more difficult

putting locations. Note that the Poisson is a tractable distribution and its support is correct

for our application. Also, the Poisson distribution is defined for any λi ∈ <. However,

it is clear that the Poisson distribution is inappropriate for modeling in this application.

For example, it is difficult to imagine how the conditions of a Poisson process are even

approximately satisfied. With respect to our application, the Poisson distribution assigns

too much probability to Prob(Zi = 1) when λi is negative. For example, when λi = 0, we

have Prob(Zi = 1) = Prob(Zi = 2) = 0.37 which implies that one-putts are as common as

two-putts from a putting location where the mean is two putts. In spatial statistics, the
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Poisson distribution is often used for lattice problems where the number of counts refer to

some region i rather than a particular location (Cressie 1993).

Although we initially considered a model based on (1), we prefer a variation where

Z1, . . . , Zn are assumed independent,

Zi − 1 ∼ truncated-Poisson(exp{λi(ri, θi)}) (2)

and the truncation is imposed such that Prob(Zi ≥ 4) = 0 for i = 1, . . . , n. The trun-

cation has the benefit of defining a structure where variance is less than the mean. In

the PGA Tour putting application, the truncated Poisson appears to be realistic. For

example, limλ→−∞ Prob(Z = 1 | λ) = 1; i.e. there are locations on the green (e.g. ex-

tremely close to the pin) where the probability of sinking the putt approaches 1.0. Also,

limλ→∞ Prob(Z = 3 | λ) = 1; i.e. there may be locations on the green (e.g. very far from the

pin with a tricky slope) where the probability of three-putting approaches 1.0.

To get a sense of the adequacy of the truncated-Poisson distribution for the given appli-

cation, we considered 2012 data as provided at www.pgatour.com. In Figure 1, we provide a

barplot of the observed percentages of the number of putts taken from 5 to 10 feet. This is

compared with the percentages arising from the fitted truncated-Poisson(0.61) distribution.

We remark that the fit is not as good at larger distances, where alternative distributions

may be considered. We comment on this further in point 5 of the Discussion.

Having specified the probability distribution of the data in (2), we note that the dif-

ficulty of the n putting locations is characterized by the unknown parameter vector λ =

(λ1, . . . , λn)′. Our interest is therefore focused on λ and a hierarchical Bayesian formulation

involves assigning prior distributions to these unknown parameters. Ideally, subjective priors

are assigned which take into account our physical understanding of the parameters. In the
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Figure 1: The observed percentages of the number of putts taken from 5-10 feet in 2012
compared with percentages given by a fitted truncated-Poisson.

spirit of Besag et al. (1991) and Diggle et al. (1998), we propose

λ ∼ Normaln(µ, σ2V ) (3)

where µ = (µ1, . . . , µn)′. A motivation is to smooth the vector λ whereby | λi−λj | is “small”

with high probability when putting locations i and j are spatially “close”. Our specification

of the variance-covariance matrix in (3) is a standard choice (Bannerjee et al. (2004)) which
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assures positive-definiteness. We let V = (vij) be the Gaussian covariance function where

vij = exp{ −δ2 ‖ (xi, yi)− (xj, yj) ‖2 } (4)

and ‖ · ‖ denotes Euclidean distance. In (4), we require δ > 0. We have used the covariates

(xi, yi) corresponding to the ith initial putting location to assign a greater correlation to

parameters λi and λj whose putting locations are spatially close. With putting locations

i and j that are spatially close, λi and λj will tend to have similar values. In the case of

spatially distant locations, vij → 0. And for diagonal entries, vii = 1. The matrix V is

known to provide a smooth surface where there are strong spatial correlations within a small

range of distances.

A secondary motivation in the hierarchical model concerns putting locations i and j that

are roughly the same distance from the pin but are not spatially close (and consequently

weakly dependent ipriori). We want to impose a structure where the mean values µi and µj

are similar. A novel aspect of the spatial modeling exercise involves the prior specification of

the vector µ in (3). Stated somewhat differently, the idea which we wish to implement is that

a shorter putt on a given line to the hole should have a greater probability apriori of being

made than a longer putt along the same line. Recall that λi relates to the probability of a

putt being made from location (xi, yi) where larger values of λi characterize more difficult

putting locations. Specifically,

Prob(Zi = 1) =
1

1 + eλi + e2λi/2
.

And also recall that µi is the prior mean of λi. Our approach divides the spatial map into 8

“pie slices” emanating from the pin (see Figure 2). The rationale is that there are typically

undulations in putting greens and that by dividing a green into slices, putts within the same
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slice will be impacted by the terrain in a similar manner. Although the choice of 8 slices is

somewhat arbitrary, we neither want too few slices (resulting in within-slice heterogeneity)

nor too many slices (resulting in few observations per slice.) The polar covariate θi defines

the slice in which the ith putting location resides. Again, the idea is that putts within the

same slice share common features with respect to the putting terrain, and that the relative

difficulty is only affected by the length ri of the putt. Accordingly, we set

µi = g(ri + β(θi)ri) (5)

where β(θi) ∈ < is mapped to one of β1, . . . , β8 according to the slice corresponding to θi

and g is increasing piecewise linear. The knots, slopes and ordinates for the piecewise linear

function g are described in the appendix and are based on historical data. From (5), we

see that the mean difficulty µi of the ith putting location is affected by by both the length

of the putt ri and the slice in which it resides. Specifically, µi ∈ < where longer putting

distances ri yield larger values of µi. The different slopes β1, . . . , β8 accommodate varying

difficulty amongst the 8 putting angles. We have experimented with the numbers of slices.

We have found that 8 slices is sufficiently small to yield stable parameter estimation, and

yet it is sufficiently large to provide realism in the varying difficulty of putting angles. The

parametrization (5) provides an appealing interpretation for β where β = 0 denotes a slice

of typical difficulty. Slices with β > 0 and β < 0 represent more difficult and less difficult

putting angles respectively. For example, β = 0.1 represents a putt that is equivalent in

difficulty to a typical putt extended by 10% in length.

To complete the model specification, we assign β1, . . . , β8 independent Normal(0, σ2
β).

The βj are centered about the average value, with differences accounting for more difficult

and less difficult putting angles. The hyperparameter σβ = 0.2 is specified to cover plausible
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Figure 2: The 8 pie slices with their corresponding parameter. Within a slice, a putt has
decreasing probability of success as the distance to the pin ri increases.

values of the βj. We also set

[σ] ∝ 1/σ

[δ] ∝ 1
(6)

where [·] is generic notation for the probability density function. The distributions in (6) are

standard reference priors where both are constrained to the positive real line.
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2.1 Advanced Putting Statistics based on Spatial Models

Having specified the spatial models above, it is necessary to fit the models (section 3) whereby

parameter estimates are obtained. The estimates which are the most important to us are

the expected number of putts from the realized green locations.

Accordingly, under (1), we calculate E(Zi | λi = λ̂i) = 1 + τ̂i where τ̂i = exp{λ̂i}. Under

(2), we instead calculate E(Zi | λi = λ̂i) = 1 + τ̂i(1 + τ̂i)/(1 + τ̂i + τ̂ 2i /2) where τ̂i = exp{λ̂i}.

For the ith golfer on the given hole for the given round of tournament golf, his performance

measure is therefore given by

E(Zi | λi = λ̂i)− Zi (7)

which represents relative strokes gained on the hole. Recall that E(Zi | λi) represents the

average number of strokes for PGA golfers from the ith putting location with difficulty char-

acterized by λi and that Zi is the actual number of strokes taken from the ith putting location

by the ith golfer. The statistic (7) relates actual performance to expected performance. A

positive value of (7) indicates above average performance on the hole whereas a negative

value indicates below average performance. Our proposed advanced putting statistic for a

round of golf for the ith golfer would therefore involve a summation of (7) over all 18 holes.

For a tournament statistic, the summation would involve 72 terms corresponding to four

rounds of 18 holes of golf. In a tournament, 72 spatial maps would need to be created.

(Note that new hole locations are used for each round in a tournament.) Season averages

might similarly be calculated. As is done for the strokes gained-putting statistic, we adjust

the spatial statistic against the field (http://wrongfairway.com/tag/strokes-gained-putting).

We emphasize that our inferential problem only requires the expectation of Z at the

realized locations where putts have taken place. This simplifies inference and also distin-
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guishes our application from geostatistical problems (Cressie 1993) where spatial estimates

are required at locations other than those correspondng to sample data.

3 COMPUTATIONS AND ANALYSIS

After specifying the model components, the standard first exercise in a Bayesian application

is an attempt to express the posterior distribution. We use [A | B] to generically denote

the density of A given B. Following the distributional assumptions given in section 2, the

posterior density takes the form

[λ, σ, β, δ | Z] = [Z | λ, σ, β, δ] · [λ, σ, β, δ]

= [Z | λ] · [λ | σ, β, δ] · [σ, β, δ]

= [Z | λ] · [λ | σ, β, δ] · [σ] · [β] · [δ] (8)

which has dimension n + 1 + 8 + 1 = n + 10 and where the main parameters of interest

λ1, . . . , λn characterize the difficulty of the n putting locations. Substituting the parametric

distributions, (8) reduces to

[λ, σ, β, δ | Z] ∝
n∏
i=1

eλi(Zi−1)e−e
−λi

e−e
−λi (1 + eλi + e2λi/2)

· e
− 1

2σ2
(λ−µ)′V −1(λ−µ)

σn|V |1/2
·

8∏
j=1

e
− 1

2σ2
β

β2
j · 1

σ

=
n∏
i=1

eλi(Zi−1)

(1 + eλi + e2λi/2)
· e
− 1

2σ2
(λ−µ)′V −1(λ−µ)

σn+1|V |1/2
·

8∏
j=1

e
− 1

2σ2
β

β2
j

(9)

where µi = g(ri + β(θi)ri) and V is given in (4).

Whereas the posterior density (9) provides the full description of parameter uncertainty

given observed data, the complexity of (9) is such that posterior summaries are needed for
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interpretation. Posterior summaries are typically simple quantities such as posterior means

and posterior standard deviations. In this application, these quantities take the form of

intractable integrals.

Based on the complexity of the posterior density in (9), it seems that a sampling based

methodology is the only feasible way to approximate posterior summaries. Details associated

with a Markov chain implementation are provided in the appendix.

3.1 A Test Case: The 2012 Honda Classic

The data used in our analysis were taken from the 2012 Honda Classic, held March 1-4, 2012

at the PGA National Champion course in Palm Beach Gardens, Florida. The Champion

course at PGA National is known for its overall difficulty and for its undulating greens.

ShotLink data were extracted for the final (fourth) round of the tournament. For each hole

and for each golfer, the data consist of the starting location (x, y) of the first putt on the

green and the total number of putts taken.

For illustration purposes, we examine the first hole of the final round in detail. Figure

3 provides the number of putts taken by each of the 76 golfers on the first hole of the final

round. As expected, we observe that the probability of sinking a putt (i.e. a one-putt)

decreases as the length of the putt from the hole increases. We also observe that putts in

the first quadrant are more difficult. For example, when compared to the other quadrants,

three-putts are more common in the first quadrant.

We next fit the spatial model using the data taken from the first hole of the final round.

The Metropolis within Gibbs algorithm was run for 25000 iterations where the first 2500

iterations were used as burn-in. This required approximately 10 hours of computation on a

Mac Pro workstation. Convergence was assessed using standard diagnostic tests (e.g. trace

plots, use of multiple chains, etc.) In Table 1, we provide the Markov chain estimates for the
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Figure 3: The number of putts taken by each of the 76 golfers on the first hole of the final
round of the 2012 Honda Classic. The x and y coordinates are measured in feet.

secondary parameters of interest. They appear to agree with our intuition. In particular, the

largest β value is β1, and this corresponds to the first quadrant where the putting terrain

is believed to be more difficult. We also note that the posterior standard deviations are

not large when compared to the posterior means. This suggests that there is substantial

information in the data concerning the secondary parameters. Note that we investigated the

pairwise correlation between the β’s and found no significant correlations.

In Figure 4, we focus on the primary parameters λ1, . . . , λn by plotting the expected

number of putts E(Zi | λi = λ̂i) for a selection of putting locations where λ̂1, . . . , λ̂n are the

corresponding estimated posterior means. The expected value estimates are believed to be
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Parameter Post Mean Post Std Dev
δ 0.082 0.021
σ 2.384 0.856
β1 0.151 0.076
β2 -0.084 0.043
β3 -0.063 0.039
β4 -0.078 0.049
β5 -0.081 0.043
β6 0.079 0.061
β7 0.088 0.057
β8 0.087 0.048

Table 1: Posterior means and posterior standard deviations for the secondary parameters of
interest corresponding to the first hole of the final round of the 2012 Honda Classic.

accurate to within one digit in the last decimal place. We observe several appealing features:

• within a quadrant, the expected number of putts increases as the distance from the

hole increases

• the expected number of putts is similar when the putting locations are spatially close

• the expected number of putts is greater in the first quadrant than in other quadrants

when comparing putts with the same radii

17



●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

2.34

2.00

2.05

2.02

2.022.05

2.06

2.31

2.00

2.08
2.37

2.48

2.03
2.11

2.31

2.31

2.04

−40

−20

0

20

−20 0 20 40
X−Coordinate

Y
−

C
oo

rd
in

at
e

Figure 4: For a selection of putting locations i, the expected number of putts E(Zi | λi = λ̂i)
obtained using the spatial model.

We now turn to the fitting of the spatial model for all 18 holes in the fourth round of

the 2012 Honda Classic. Recall that model (2) is based on a truncated-Poisson distribution

where four-putts are viewed as an impossibility. Consequently, data for which the observed

number of putts Zi ≥ 4 are converted to Zi = 3. Fortunately, four-putts are very rare, and

in this dataset, involving 76*18=1368 putting opportunities, there was only one observed

four-putt.

To get a sense of the utility of the spatial approach, we calculate various statistics for

the fourth round. These statistics are recorded in Table 2 for the top 11 finishers in the

tournament. We first observe that the total number of putts in the round varies from 25 to
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32. As discussed previously, this statistic is not a good measure of putting proficiency as it

does not account for the initial location of the ball on the green. The strokes gained-putting

statistic has been adjusted for the field where the fourth column of Table 2 was obtained from

http://media1.pgatourhq.com/reports/R20120101 LeadersStatisticalSummary.pdf. With the

strokes gained-putting statistic, we observe that all of the 11 golfers putted above average

(i.e. positive values). This is not surprising as these are the top 11 finishers and it is well-

known that putting is a key component of success. According to the strokes gained-putting

statistic, we observe that Tiger Woods had the best round of putting amongst the golfers in

Table 2 where he was more than three strokes better than average. When we compare the

strokes gained-putting statistic to the enhanced spatial statistic developed in this paper, we

observe general agreement. Using the spatial model, Tiger Woods also had the best round

of putting amongst the golfers in Table 2, but we note that the spatial model suggests that

he was nearly four strokes better than average. The differences between the original strokes

gained-putting statistic and the spatial strokes gained-putting statistic indicate that factors

other than distance (e.g. undulation of the greens) also affect the difficulty of putts.

Golfer Finishing Total Strokes Gained Strokes Gained
Position Putts (Original) (Spatial)

Rory McIlroy 1 28 3.0 3.0
Tiger Woods 2 26 3.2 3.9
Tom Gillis 2 30 0.6 3.0
Lee Westwood 4 28 1.3 1.8
Charl Schwartzel 5 32 1.1 2.1
Justin Rose 5 30 1.1 1.5
Rickie Fowler 7 26 2.0 3.0
Dicky Pride 7 26 2.7 2.8
Graeme McDowell 9 29 0.8 1.2
Kevin Stadler 9 25 3.1 2.4
Chris Stroud 9 25 2.6 1.9

Table 2: Various putting statistics calculated for the fourth round of the 2012 Honda Classic.
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We would like to investigate further the differentiation between strokes gained (spatial)

and strokes gained (original). From the last two columns of Table 2, it seems that Tom

Gillis may have putted from relatively difficult directions. The entries suggest that he is an

additional 2.4 strokes better than the field when the spatial aspect is considered. Conversely,

it seems that Kevin Stadler may have putted from relatively easy directions. For each of

these golfers, we have 18 values which are the posterior means of the β’s corresponding to

the slices of their initial green locations. These values are used to produce the boxplot in

Figure 5. Indeed, we observe that Stadler’s β values tend to be smaller indicating that he

generally putted from easier directions.
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0.00

0.05

0.10

0.15

Kevin Stadler Tom Gillis
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β

Figure 5: Boxplot of the posterior means of the β’s corresponding to the slices of the initial
green locations for Kevin Stadler and Tom Gillis.
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It is interesting to ask how much can be gained through a good round of putting. From

Table 2, it appears that an exceptional round of putting can lower a golfer’s score (relative

to the field) by as many as three strokes. In the 17 PGA stroke play tournaments of 2013

prior to May 1, the margin of victory ranged from zero strokes (decided in a playoff) to four

strokes, with an average margin of victory of 1.8 strokes. Clearly, three strokes saved in a

round by putting is a meaningful performance.

4 DISCUSSION

This paper introduces an enhanced metric for the evaluation of putting proficiency on the

PGA Tour. The approach is novel in that it assesses the difficulty of putts by considering

both the distance and the orientation with respect to the pin. The methodology relies on the

development of a spatial statistics model and is facilitated by ShotLink data which records

the position on the green for all putts.

Whereas the approach appears promising and provides new insights with respect to

putting proficiency, we consider our work to be an initial exploration of spatial dependencies

on putting. We have identified at least six avenues for future investigation.

1. It may be preferable to determine the slices (Figure 2) on a hole by hole basis. Since

the slices characterize directional difficulty, it would not be ideal if a slice contained a

ridge that affected putts in only a portion of the slice. It is possible to both vary the

number of slices and rotate the angles to improve uniformity within slices. Related to

this, it would be good to have additional information on the shape and the orientation

of the greens. The ShotLink data only reveal coordinates for each putting location.

Greens are not generally circular, and such information would provide accurate shapes

of the spatial maps and allow a golfer to better relate the map to the actual green.
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2. The model is currently fit for each of the 18 holes in each round of a tournament.

It may be possible to consider more complex models where information concerning

a green can be borrowed over the four rounds of a tournament. This may improve

parameter estimation.

3. To quantify how much better the “great” putters are than average putters, it would

be interesting to calculate our strokes gained-putting spatial statistic for an entire

season, and to produce standard errors. This would provide more insight on the value

of putting in the overall game of golf.

4. Although we calculate the expected number of putts from the actual putting locations

on the greens, it may be possible to infer putting difficulty at other locations. Such

historical maps could be useful for PGA Tour professionals who strategize the location

of their approach shots to the green.

5. As remarked in section 2, the fit of the truncated-Poisson for intermediate putting

distances was less than ideal (e.g. Figure 1). Although the Poisson distribution has

been used extensively in spatial statistics, it may be preferable to consider alternative

distributions for the number of putts defined on the integers 1, 2, 3. Ideally, such a dis-

tribution would be tractable and be characterized by a single parameter which describes

the difficulty of a putt. Using historical putting percentages from various distances,

we have experimented with the probability mass function pi(zi) where pi(1) = λi,

pi(2) = 1 − λi − e−41λi and pi(3) = 1 − pi(1) − pi(2) with appropriate constraints

on λi. Of course, a different prior specification would be required with alternative

distributions.

6. Although our motivation was the introduction of a spatial component to model putting,

alternative models could be considered. For example, as suggested by a Reviewer, the
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outcomes corresponding to individual putts might be modeled as a function of the

location and also the golfer. Golfer effects could then be analyzed instead of modeling

all PGA golfers as identically distributed. It may also be possible to consider every

putt on a green, instead of only the initial putts. Such an approach would introduce

dependencies between successive putts. Consequently, it would seem natural to extend

the putting outcomes from Bernoulli data to the resting locations of the intermediate

putts.
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6 APPENDIX

We provide the details associated with the Markov chain Monte Carlo implementation briefly

discussed in section 3.

In a Markov chain approach, it is typical to first consider the construction of a Gibbs sam-

pling algorithm. In a Gibbs sampling algorithm, we require the full conditional distributions

of the model parameters. A little algebra yields the following full conditional densities:

[λi | · ] ∝ eλi(Zi−1)

(1+eλi+e2λi/2)
· e−

1
2σ2

(λ−µ)′V −1(λ−µ)

[σ2 | · ] ∝ Inverse-Gamma
(
n−1
2
, 2
(λ−µ)′V −1(λ−µ)

)
[βj | · ] ∝ exp{− 1

2σ2 (λ− µ)′V −1(λ− µ)} ·
∏8

j=1 e
− 1

2σ2
β

β2
j

[δ | · ] ∝ |V |−1/2 exp{− 1
2σ2 (λ− µ)′V −1(λ− µ)}

(10)

Referring to the full conditional distributions in (10), we observe that sampling σ is

straightforward. Most statistical software packages facilitate generation of a random variate

v from the required Gamma distribution, and we then set σ = 1/
√
v.
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The remaining distributions in (10) are nonstandard statistical distributions, and we

therefore introduce Metropolis steps, sometimes referred to as “Metropolis within Gibbs”

steps for variate generation (Gilks, Richardson and Spiegelhalter 1996). A general strategy in

Metropolis is to introduce proposal distributions which facilitate variate generation and yield

variates that are in the “vicinity” of the full conditional distributions. For the generation of

λi, we consider putting data obtained from the 2012 PGA Tour up to and including the Ryder

Cup on September 30, 2012. The data were obtained from the website www.pgatour.com

and are summarized in Table 3 by considering the median putting performance by PGA

Tour professionals at a distance of r feet from the pin. From section 2.1 of the paper, we

recall that the expected number of putts is given by E(Z | λ) = 1 + τ(1 + τ)/(1 + τ + τ 2/2)

where τ = exp{λ}. Since λ(r, θ) is a function of the distance to the pin r and the directional

angle θ, we equate the values in the fifth column of Table 3 to E(Z | λ) from which plausible

values of λ can be derived for a specified distance r to the pin. For example, when r = 17.5,

we obtain λ = 0.071. These plausible values of λ can then be used in the development of

proposal densities. For example, if ri = 17.5 corresponding to the ith golfer, we consider the

proposal density λi ∼ Normal(0.071, 0.04) where the variance is conservatively large relative

to plausible values of λi.

Putting Distance r Proportion of
(in feet) One-Putts Two-Putts Three-Putts E(Z)

07.5 0.554 0.441 0.005 1.45
12.5 0.298 0.694 0.008 1.71
17.5 0.180 0.804 0.016 1.84
22.5 0.114 0.861 0.025 1.91

Table 3: Putting summaries from the 2012 PGA Tour and the resultant expected number
of putts.

For the generation of βj, we consider the Normal(0, σ2
β) proposal distribution. Recall that

the Normal(0, σ2
β) distribution is also the prior distribution for βj, j = 1, . . . , 8. Matching the
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prior with the proposal results in a simplification of the corresponding Metropolis acceptance

ratio. Recall from (3) that λi has mean µi and that µi = g(ri + β(θi)ri) according to (5).

Referring to the case of r = 17.5 in Table 1 and the above considerations, this suggests

0.071 = g(17.5)

corresponding to putting angles of average difficulty. Using similar constraints at other

distances r, we obtain knots for the piecewise linear function g. To be precise, we set

g(ri + β(θi)ri) =



−4.600 + 0.705(ri − 2.0 + β(θi)ri) 2.0 ≤ (1 + β(θi))ri < 7.5

−0.722 + 0.111(ri − 7.5 + β(θi)ri) 7.5 ≤ (1 + β(θi))ri < 12.5

−0.165 + 0.047(ri − 12.5 + β(θi)ri) 12.5 ≤ (1 + β(θi))ri < 17.5

0.071 + 0.024(ri − 17.5 + β(θi)ri) 17.5 ≤ (1 + β(θi))ri < 22.5

0.192 + 0.019(ri − 22.5 + β(θi)ri) 22.5 ≤ (1 + β(θi))ri < 40.5

where values (1 + β(θi))ri < 2 are set to (1 + β(θi))ri = 2 and values (1 + β(θi))ri > 40 are set

to (1 + β(θi))ri = 40. To get a feeling for the piecewise linear function g, Figure 6 provides

a plot of g versus r at the maximum posterior mean β1 = 0.151 corresponding to the first

quadrant (green line) and at the prior mean β = 0.0 (red line). We observe that a putt from

any given distance is more difficult in the first quadrant than on average.

For the generation of δ, we need to be aware of the constraint δ > 0. We consider the

proposal distribution Gamma(0.25, 1.0). This is based on a subjective estimate δ = 0.25 and

a sufficiently large variance to capture the true value of δ.
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Figure 6: The piecewise linear function g evaluated at the maximum posterior mean β1 =
0.151 (green line) and at β = 0 (red line).
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