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Abstract

This paper proposes increasingly complex models based on publicly available data
involving rally length. The models provide insights regarding player characteristics
involving the ability to extend rallies and relates these characteristics to performance
measures. The analysis highlights some important features that make a difference
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1 INTRODUCTION

As is the case with many sports, tennis has seen an upsurge of work in analytics. One
of the first serious statistical contributions to tennis analytics was the work by Klassen
and Magnus (2001) which concerned an investigation of the iid assumption that points are
independent and identically distributed. They concluded that there is a positive correlation
between successive outcomes and that servers are less likely to win a point in important
situations.

Baker and McHale (2014, 2017) used the classical Bradley-Terry model to compare the
performance of tennis players. McHale and Morton (2011) employed the same model for the
purpose of forecasting tennis matches. Kovalchik (2016) studied 11 forecasting models in
tennis for the purposes of match prediction. Ingram (2019) subsequently proposed a point-
based hierarchical model for predicting the outcome of tennis matches which outperformed
the point-based models studied by Kovalchik (2016). Ingram (2019) introduced a binomial
model where the probability of winning a serve is dependent on skill, time and playing
surface. A comprehensive text on tennis analytics for Wimbledon is given by Klaasen and
Magnus (2014).

More recently, tennis analytics has been assisted by the availability of tracking data.
With tracking data, player and ball locations are recorded with high frequency (i.e. spatio-
temporal data), and these detailed datasets have contributed to explorations of many sport-
ing problems that were previously unimaginable. Gudmundsson and Horton (2017) provide
a review on spatio-temporal analyses used in invasion sports where player tracking data are
available. In tennis, there are a growing number of papers that provide statistical analyses
and rely on tracking data. Tea and Swartz (2023) investigate serving tendencies which
may allow a player to anticipate the nature of the opponent’s serve. The approach relies
on hierarchical models in a Bayesian framework. Kovalchik and Albert (2022) also used a
Bayesian framework where they investigate serve returns by introducing a semiparametric
mixture model. Other papers that use tracking data but focus exclusively on the serve in-
clude Mecheri et al. (2016) and Wei et al. (2015). The text by Albert et al. (2017) provides
a flavour for sports statistics across major sports.

Whereas tracking data analyses are on the increase, tracking data are often proprietary.

In this paper, we use publicly available non-tracking data to analyze an aspect of tennis that



does not seem to have been previously investigated. Specifically, we consider rally length as
the response variable with the added information whether the last shot was touched or not
touched (i.e. a winner). This simple and readily available information allows us to analyze
the rally characteristics of players. Various models of increasing complexity are introduced
where we consider player characteristics, the identification of the server and a reduction in
serve advantage as the rally proceeds.

In Section 2, we describe the data and associated issues with the dataset. In Section
3, three models of increasing complexity are proposed which take into account increasingly
realistic features of the sport of tennis. In Section 4, priors are introduced for the models
and computation is discussed. We fit the models using large datasets based on the ATP
(Association of Tennis Professionals) tour for men and the WTA (Women’ Tennis Associ-
ation) tour for women. We consider separate analyses for first and second serves. Insights
are obtained for the various models. For example, we consider overall tennis characteristics
and how these vary across the the men’s and the women’s games, and in first versus second
serves. We then investigate serve and rally characteristics with respect to various players of
interest. We observe how extending rallies is an important component of success in tennis.
Model assessment and simulation techniques are also discussed. We conclude with a short

discussion in Section 5.

2 TENNIS DATA

The data analysed in this paper is based on 947,821 and 422,776 serves from men’s and
women’s professional tennis matches, respectively. The data were obtained from the Match
Charting Project (https://github.com/JeffSackmann/tennis_MatchChartingProject) main-
tained by Jeff Sackmann. The data involve matches from 1970 through 2022 and contain
shot-by-shot outcomes involving 710 distinct men and 489 distinct women. This public
dataset provides information on shot type, shot direction, depth of returns, types of errors,
and more. The data were collected by volunteers after watching the video recordings of
matches. To the best of our knowledge, there is no other source of publicly-available data
of this type. At present, these data appear to be under utilized for statistical modelling of

tennis outcomes.



The data covers matches from all the major Grand Slam events, the Davis Cup and
many minor tournaments. The best players of this time period are included in the dataset.
Since the charting of matches was at the discretion of volunteers, data are highly skewed in
favour of later years. Also, better (i.e. winning) players have a higher representation since
they frequently reached the latter rounds of tournaments.

We have chosen to use limited and relatively simple data to facilitate modelling. As will
be seen in Section 4, important tennis insights can be achieved with such data. The data
collected for each point are of the form (7, 1) where T is the number of touches leading
to the point and I is an indicator function as to whether the server won the point. For
example, suppose that the serve is in play and the receiver hit the serve out of bounds. In
this case, there are two touches yielding 7' = 2 and I = 1. Alternatively, suppose that the
serve is in play, the receiver returned the serve and the server then hit the ball into the net.
In this case, there are three touches yielding 7' = 3 and I = 0. Note there is a technicality
in the definition of (7, I). If (T'= 1,1 = 0), then the event corresponds to a fault on a first
serve where no point is awarded. However, (T = 1,1 = 0) corresponds to a point for the
receiver on a second serve (i.e., a winner).

It may seem that the number of touches T is a nonstandard choice for a data variable.
We have selected T' over the related variable “rally length” (or rally count) since there
appears to be some confusion over the definition of rally length. For example, some people
refer to an ace as a rally of length zero while others refer to an ace as a rally of length one.
We also found that the variable T' is more intuitive for modelling purposes.

Data and code that were used in this manuscript have been made available and can be

accessed as supplementary materials.

2.1 Data Management Issues

When analyzing data, it is obviously important that the data are accurate. Therefore, we
carried out various procedures to check data accuracy.

In the MatchChartingProject dataset, rows correspond to points awarded. Therefore,
we augmented the dataset to include all serves. For example, whenever a second serve
occurred, this implied that there was a first serve that resulted in a fault, for which no

point was awarded.



Also, it is expected that in a huge dataset involving volunteer coding, some mistakes
occur in data entry. For example, in the rallyCount variable, there were five non-numeric
characters out of more than 500,000 serves in the ATP data. We simply removed the
corresponding rows when this occurred.

In our model formulation, we need to determine the number of touches 7. However, in
the MatchChartingProject dataset, T is not directly provided and is obtained through the
rallyCount variable RC. We set T' = RC' if the IsRallyWinner variable is TRUE, and we
set T'= RC + 1 if the IsRallyWinner variable is FALSE. According to Jeff Sackman, RC'

is the number of shots excluding errors.

3 MODELS

In this section, we present three models. The first model is simple, concise, and assumes
common characteristics across all players. The model serves as a baseline case for the
more realistic models to follow. The second model introduces the realism of individual
player characteristics. The third model is a further extension, which distinguishes return
characteristics according to whether a player is the server.

None of the models below distinguish first serves from second serves. However, since
we have large datasets, we simply use the same model analyzed separately for the two
situations with model parameters interpreted according to the serve number. We analyze

first and second serves separately in Section 4 for both the men’s and women’s games.

3.1 Model 1

Although this model is not meant to be realistic, it introduces notation and provides a base-
line case for comparison purposes. This model also permits straightforward generalizations
for more complex models. Later, we use results from Model 1 to elicit prior information for
more realistic Bayesian models.

We introduce a parameter vector (a, f, s, w,r,m) which describes player characteristics.
There is an implicit assumption that all players have the same characteristics. Specifically,



we define

a = Prob(player serves an ace)

f = Prob(player serves a fault)

s = Prob(player serves a ball that is neither an ace nor a fault)

w = Prob(player returns a winner)

r = Prob(player returns a ball in play which is subsequently touched by the opponent)
m = Prob(player makes a mistake by touching but not returning a ball in play)

The parameterization includes service parameters a and f, critical components of tennis
where an ace is defined by a serve that is in play, is not touched by the receiver, and therefore
accrues a point to the server. The return parameters (w,r,m) are convenient since they
describe all possibilities that can occur on a return that is touched, and consequently,
w ~+ 7+ m = 1. Quality of return capability is characterized by large w and small m.

We note that the proposed parameters have a different focus than standard statistics
reported in the tennis literature. For example, with respect to the parameter a (aces), a
commonly reported statistic is aces per match. A problem with aces per match is that
players may not have the same number of average serves per match. A player with more
serves (i.e. longer matches) will have an inflated aces/match statistic. Also, career aces
favour players with longevity. Our proposed parameters and their estimates standardize
performance with respect to the number of opportunities.

Consider then a first serve that results in a fault. In this case, neither player wins the
point and we have

Prob(T'=1)=f. (1)

Alternatively, consider a one touch event (i.e., 7" = 1) that may be either a first or

second serve, but is not a first serve fault. In this case, we have

Prob(T =1,1) =a’ f*1. (2)



For two touches, a conditional probability expansion involving the two events yields
Prob(T =2,1) = s m' w'™!
and, in general, for rallies with t = 2,3, ..., touches,

g rt/2=1 pt/2=1 1 q1=1 t even

Prob(T =1t,1) = { g pl/2-1/2 pt/2-3/2 )1 0 1-1 4 044 (3)
Therefore, the likelihood based on the observed data is formed by taking the product
over all serves using the expressions (1), (2) and (3). Model 1 has a parameterization that

is 4-dimensional.

3.2 Model 2

We extend Model 1 by introducing a parameter vector (a;, fi, s;, w;, r;, m;) for each player
1 =1,...,N. The vector describes playing characteristics of player ¢. The generalization
is needed since some players, for example, are better servers than other players. For each
1=1,..., N, the parameters satisfy the constraints in Model 1.

Without loss of generality, we assume that player ¢ serves to player j. Consider then a

first serve that results in a fault. In this case, neither player wins the point and we have
Prob(T'=1) = f; . (4)

Alternatively, consider a one touch event (i.e., 7" = 1) that may be either a first or

second serve, but is not a first serve fault. In this case, we have

Prob(T =1,1) =a! fI='. (5)

3 K3

Extending (3) for specific players, for rallies with ¢ = 2,3,..., touches, we have

P o A t even
Prob(T =t 1) =< "9 1 n" 9 a/d 7 6
( ) { 5. r;-/2 1/2 rf/2 3/2 w! mz'lil ¢ odd (6)



Therefore, the likelihood based on the observed data is formed by taking the product
over all tennis points using the expressions (4), (5) and (6), and by introducing appropriate
subscripts ¢ and j for specific players. With N players, Model 2 has a parameterization

that is 4 N-dimensional.

3.3 Model 3

Although convenient, the Model 2 does not realistically account for differences in return
characteristics according to the number of touches. For example, suppose again that player
1 serves to player j. It is well known in tennis that the probability of j hitting a winner
on the immediate serve return (touch number two) is less than the probability of j hitting
a winner on touch number four. The reason is that serves often place the returner in
vulnerable situations where it is difficult for the returner to hit a quality shot. By the time
player j reaches touches 4, 6,8, ..., the impact of the serve begins to dissipate.

Accordingly, we augment the return parameters (w;, r;, m;) to (wgt), 7‘2@, mgt)) where the
superscript ¢t = 2,3,..., corresponds to the touch number. For example, we would expect
that wgg) < w£4) < wl@ and that wi(g) > wi(5) > wzm.

With this modelling enhancement, the probabilities (4) and (5) remain the same. How-
ever, the probabilities in (6), for touches t = 2,3, ..., become
S 2/:2;1 T'](-zk) rz-(%ﬂ)) (mg-t))l (wj(-t))l_l t even

s (02020 ) (TE202 5 0) @) m®) ¢ odd

7

Prob(T =t,1) = (7)

We note that Model 3 as expressed in equation (7) increases the parametrization. With
N players and with maximum number of touches t,.., the extended parametrization in
Model 3 is (2 + 2(tmax — 1)) N-dimensional. This increases the computations but the com-

puting time remains manageable as discussed at the end of Section 4.3.

4 ANALYSES AND RESULTS

The analyses and results are provided according to the three models of increasing com-

plexity. All of our models are developed in the Bayesian framework, and consequently



require the specification of prior distributions. We discuss prior selection and associated

computational issues. We also provide a comparison of fit among the three models.

4.1 Analysis of Model 1

We begin with the simplest model which provides overall insights but later serves in prior
development for more complex models.

For the Bayesian approach, we consider flat priors given by
(a, f,s) ~ Dirichlet(1,1,1) (8)
which is assumed independent of
(w,r,m) ~ Dirichlet(1,1,1) . 9)

Note that the Dirichlet distributions in (8) and (9) are 2-dimensional where a+ f+s = 1 and
w~+r+m = 1. The parameter s is a characteristic of lesser interest and is not specifically
investigated. To obtain posterior inferences, we use the programming language Stan (Stan
Development Team 2023). A main benefit of Stan is that a user supplies only the statistical
model, the prior specification and the data. The associated Markov chain Monte Carlo
(MCMC) aspects of the Bayesian implementation are carried out in the background.

To assess the robustness of Bayesian inferences with respect to prior selection, we cal-
culate classical estimates of the parameters that are based on proportions. Recall that T is
the number of touches and I = 1/0 corresponds to the server/receiver winning the point.

Let n be the corresponding number of serves and let £, be the number of touches on the



kth serve. Then the sample proportions are given as follows:
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In Table 1, we provide estimated posterior means and proportions for Model 1. This is
done for first and second serves using both the ATP and WTA data. We observe that there
is agreement between the posterior estimates and the proportions which indicates that the
information contained in the data dominates the prior. This is a consequence of having a
rich dataset with many observations.

In Table 1, we observe some interesting features regarding first serves. It seems that
aces occur in the men’s game (0.08) at roughly double the rate observed in the women’s
game (0.04). This may be explained by the higher average speed of men’s serves. The
remaining displayed parameter estimates are comparable between men and women. We
observe that first serve faults occur roughly forty percent of the time (f = 0.40 for men
and f = 0.37 for women). This high rate may be explained by the desire to hit a first serve
that is difficult to return - difficult serves are typically directed near the boundaries and
are close to faults. If a player is able to get their racket on the ball, the return rate is high
(r = 0.74 for men and r = 0.76 for women). And if a player is able to get their racket on
the ball, the probability m of making a mistake is roughly 2.5 times the probability w of
hitting a winner.

For second serves, the occurrences of aces and faults are much different from first serves.
Aces are reduced in second serves because the server is less aggressive and wants to ensure
that they do not double fault. Similarly, faults are greatly reduced with second serves
for both men and women. In searching the literature, we could not find any reports of

second serve ace percentage other than that second serve aces are extremely rare. Here,

10



we estimate second serve ace percentage where there are 1% second serve aces for men and
0.4% second serve aces for women.

When comparing men to women on second serves, the biggest parameter differences
involve aces (a = 0.01 for men and @ = 0.004 for women) and faults (f = 0.09 for men and
f = 0.13 for women). The lower ace percentage for women compared to men may again
be due to lower serve speed. However, the higher fault percentage for women compared to

men is not so readily explained.

Parameters
Serve n a f A T m
ATP 1st 692385 || 0.08 (0.08) 0.40 (0.40) | 0.07 (0.07) | 0.74 (0.74) | 0.19 (0.19)
WTA 1st 307750 || 0.04 (0.04) 0.37 (0.37) | 0.07 (0.07) | 0.76 (0.76) | 0.17 (0.17)
ATP 2nd 255436 || 0.01 (0.01) 0.09 (0.09) | 0.05 (0.05) | 0.80 (0.80) | 0.15 (0.15)
WTA 2nd 115026 || 0.004 (0.004) | 0.13 (0.13) | 0.06 (0.06) | 0.77 (0.77) | 0.17 (0.17)

Table 1: Estimated posterior means (sample proportions) for the parameters a, f,w,r,m
corresponding to Model 1. The posteriors are based on flat priors. The sample size n for
the number of serves is also reported.

Under Model 1, we can investigate how the sport of tennis has changed over time.
In Figure 1, we plot the proportions corresponding to the parameters a, f, s, w,r,m as a
function of the year. We observe that aces (a) are more probable in the modern game.
In turn, the receiver’s ability to touch the serve (s) is reduced. What is conspicuous in
Figure 1 is the little downward hump during the years 1995-2000 in both the s and the r
parameters. These parameters are related in that they express an aspect of return capability
on the serve and on subsequent touches, respectively. We have investigated the history of
technology changes and discussions of strategic changes in tennis, and we cannot offer a

good explanation for this observed phenomenon.

4.2 Analysis of Model 2

Model 2 extends Model 1 by introducing player specific characteristics. That is, we extend
the parameter vector (a, f,s,w,r,m) to (a;, f;, si,w;, r;, m;) for all players ¢ = 1,...  N.
The modelling philosophy is that individual player characteristics arise from a population

11
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Figure 1: Plots of the estimated parameters a, f, s, w,r, m from Model 1 as a function of
time (year).

of player characteristics given by
(aj, fi, ;) ~ Dirichlet(ka, kf, ks) (10)

which is assumed independent of
(w;, r;, m;) ~ Dirichlet(kw, kr, km) (11)

where (a, f,s,w,r,m) are the posterior means obtained through the previous analysis of
Model 1, and k > 0 is a specified constant. Hence, the approach is empirical Bayes where
larger values of k impose greater knowledge through the prior distributions (10) and (11).

12



More specifically, larger values of k decrease the prior variance.

Our rationale for setting £ > 0 is that we want players with longevity to have posterior
parameter estimates that reflect their actual playing performance. On the other hand, for
players with short professional careers who have served infrequently (say n; < 100), we
want their posterior estimates to revert closer to population averages. Accordingly, we
have set & = 200 after some trial and error. Alternatively, we considered an approach with
the hyperprior k£ ~ Normal(200,400). Under this specification, we obtained the posterior
mean k = 164.7.

The use of Dirichlet distributions as priors is natural when the parameters form a
probability distribution. However, there is a limited literature on the specification of the
Dirichlet hyperparameters. In one example, Lefkimmiatis, Maragos and Papandreou (2009)
utilize Dirichlet priors in the context of photon-limited imaging where Poisson processes
are modelled.

With more parameters in Model 2 than Model 1, computational demands increase.
Running Stan with 2000 iterations using the men’s first serve dataset requires 4.6 hours of
computation on a laptop computer.

We are interested in the variability of the player characteristics for the four datasets
(ATP 1st Serve, WTA 1st Serve, ATP 2nd Serve, WTA 2nd Serve). In Figures 2-4, we
provide the boxplots of the posterior means of the parameters a;, f; and w; for the four
datasets. The main takeaway from these figures is that one can see the distributional form
(e.g. variability and skewness) that is not readily apparent from Table 1. For example, from
Figure 2, it is interesting that there is more variability in first serve ace percentage amongst
men than amongst women.

With an understanding of the distribution of parameter estimates, we wish to observe
which players distinguish themselves with respect to the player characteristics. In Tables
2-4, we highlight the top five players with respect to their posterior estimates a;, f; and w;
under the four datasets. From Table 2, we observe that the top five list of ATP players who
serve high ace percentages (first serve) are familiar names. Reilly Opelka is 6 feet 11 inches
tall and this affords a serve trajectory that can maximize serving speed. He is a current
player who is not highly ranked (#643 in 2023). It will be interesting to see if his overall
game catches up to his devastating serve. John Isner is likewise tall (6 feet 10 inches) and

is renowned for his serve. Goran Ivanisevic was a left hander which is unusual and may
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Figure 2: Boxplots of the posterior probability of an ace a; by players for the four datasets.

have accounted for the difficulty that players experienced when returning his serve. It is
noteworthy that four of the top five ATP players are still active in 2023 (Opelka, Isner,
Kyrgios) or recently retired (Karlovic). Interestingly, three of the players from the first serve
list reside on the second serve list. With second serves, Maxime Cressy is an unusual case
with an ace percentage that is comparable to the mean first serve ace percentage. Cressy
is renowned for his high risk/reward serve and volley style, and this is much discussed in
tennis circles; see Imhoff (2022). It seems that Cressy has discovered something, and that
he differs from the population of ATP professionals. In the women’s game, Serena Williams
sits atop the first serve ace percentage list. Similar to the men, four of the top five players
with respect to first serve ace percentage (excepting Lucie Hradecka) are recent players.
With WTP second serve ace percentage, there is not much to discuss since all players (even
the top ones) have very few aces.

From Table 3, we first remind ourselves that low fault percentage is considered good.
Generally speaking, the players in these lists are not specifically known for their low fault
percentage. It is remarkable that John Isner appears on this list (ATP first serves) and also
in Table 2 for first serve ace percentage. His appearance on both lists confirms that he is
an outstanding server. During his playing days, Mats Wilander must have had outstanding
serve control; he has low fault percentage on both first and second serves. For the women,
we observe that Chris Evert (an iconic player) faulted infrequently on first serve. Given the

14
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Figure 3: Boxplots of the posterior probability of a fault f; by players for the four datasets.

ATP 1st Serve ‘ WTA 1st Serve ‘ ATP 2nd Serve ‘ WTA 2nd Serve
1. R.Opelka (0.21) | 1. S.Williams (0.11) | 1. M.Cressy  (0.08) | 1. C.Harrison  (0.02)
2. I.Karlovic (0.20) | 2. M.Keys (0.09) | 2. I.Karlovic (0.04) | 2. J.Ostapenko (0.02)
3. J.Isner (0.19) | 3. L.Hradecka (0.09) | 3. A.Bublik  (0.03) | 3. C.Paquet (0.02)
4. G.Ivanisevic (0.18) | 4. K.Pliskova (0.08) | 4. R.Opelka  (0.03) | 4. S.Lisicki (0.02)
5. N.Kyrgios  (0.17) | 5. C.Vandeweghe (0.08) | 5. N.Kyrgios (0.03) | 5. J.Niemeier ~ (0.01)

Table 2: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of serving an ace a;.

nickname “Ice Maiden”, perhaps this reflected her ability not to succumb to the pressure
of faulting.

From Table 4, we investigate the ability to hit winners during the rally. It is noteworthy
here that most of the players who appear on the top lists are from an earlier era. Maybe
this is a consequence of the game being faster today (especially with respect to the serve)
and the consequent difficulty of hitting winners from faster shots. It is also noteworthy that
Novak Djokovic widely regarded as the GOAT (greatest of all time) in men’s tennis does
not appear on this list nor in the previous tables. We posit that Djokovic has an all-around
game that leads to his excellence. Prominent names that appear in Table 4 include Pat
Rafter, Stefan Edberg, Rod Laver, Hana Mandilikova and Anna Kournikova. Since hitting

winners during rallies is not a statistic that is routinely collected and analyzed, it good to
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Figure 4: Boxplots of the posterior probability of a winning shot w; by players for the four
datasets.

ATP 1st Serve ‘ WTA 1st Serve ‘ ATP 2nd Serve ‘ WTA 2nd Serve
1. A.Berasategui (0.25) | 1. S.Errani (0.26) | 1. M.Wilander  (0.04) | 1. A.Radwanska (0.07)
2. M.Wilander (0.28) | 2. C.Evert (0.27) | 2. G.Forget (0.05) | 2. M.Keys (0.08)
3. S.Baez (0.29) | 3. N.Parrizas Diaz (0.28) | 3. J.Brooksby  (0.05) | 3. K.Juvan (0.08)
4. J.Isner (0.30) | 4. A.Rus (0.29) | 4. A.Chesnokov (0.05) | 4. A.Sanchez Vicario (0.09)
5. M.Cecchinato  (0.30) | 5. M.Niculescu (0.29) | 5. M.Safin (0.05) | 5. K.Muchova (0.09)

Table 3: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of committing a fault f;.

see some excellent all-time players appearing in these lists. However, as mentioned with
Djokovic, these individual parameters, studied on their own do not portend success. As we

observe later in this section, it is the combination of skills which lead to success.

ATP 1st Serve | WTA 1st Serve ‘ ATP 2nd Serve ‘ WTA 2nd Serve
1. K.Carlsen (0.14) | 1. K.Scott (0.15) | 1. R.Laver (0.15) | 1. K.Scott (0.14)
2. K.Curren  (0.13) | 2. J.Goerges (0.12) | 2. K.Carlsen ~ (0.14) | 2. J.Ostapenko  (0.12)
3. P.Rafter  (0.12) | 3. H.Sukova (0.12) | 3. R.Krajicek  (0.13) | 3. J.Goerges (0.12)
4. S.Edberg  (0.12) | 4. S.Waltert (0.11) | 4. D.Brown (0.12) | 4. H.Mandlikova (0.11)
5. R.Laver  (0.12) | 5. J.Ostapenko (0.11) | 5. J.Siemerink (0.11) | 5. A.Kournikova (0.10)

Table 4: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of hitting a winner w;.
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We have suggested that the game of tennis may have changed over time. With the
various parameters introduced in Model 2 which characterize aspects of the game, we see
that longitudinal tennis analyses of individual players are readily possible. For example,
consider the ATP mistake parameter m; on first serves. In Figure 5, we plot the posterior
mean of m; versus the year of entry into professional tennis for the corresponding player.
There are several things to observe from Figure 5. First, there are more players in our
dataset in recent years. This is a consequence of greater availability of recent recordings for
charting. There also seems to be tighter variability in the mistake parameter m; in recent

years.

0.30-

0.25-

Posterior Mean

5
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Figure 5: Scatterplot of the posterior mean of m; for first serve ATP data versus the year
that player began professional tennis.

We now investigate how the parameters a, f, w and m correlate individually to suc-
cess. We collect the Official Pepperstone ATP player ranking points obtained from the
ATP website at https://www.atptour.com/en/rankings/singles. There are 100 players on
this list and we take the points corresponding to June 6/2022. These points are used to
determine player rankings. For example, the 1st, 50th and 100th players on the list are
Novak Djokovic, Roger Federer and Alexei Popyrin with 8770, 1030 and 626 points, re-
spectively. We obtain sample correlation coefficients between the player ranking points and
their posterior estimates. The results are reported in Table 5. The message again is that

individual parameters do not correlate strongly with success. We do note that although the
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correlations are small (i.e. close to zero), they tend to correlate in the correct directions. For
example, high probabilities of aces a; are beneficial, and here, the associated correlations
are positive with respect to the first serve. We would expect to also see a positive corre-
lation with winners w;. However, this is not the case since winners occur infrequently (see
Figure 4) and there is not much variability in winners across players. Also, as mentioned
previously, the analysis of winners needs to be considered in tandem with touch number
T. For example, winners on 1" = 2 are unlikely since this corresponds to returning a serve
where the receiver is often off-balance. On the other hand, a winner on 7" = 3 is likely since
the server retains some advantage from the serve.

Low probabilities of faults f; and mistakes m; are beneficial, and here, the associated
correlations are negative with respect to the first serve. The correlations involving second
serves are less interpretable where fewer aces and faults occur. Again, a limiting factor in
the correlation study involving w; and m; is that touch number is not considered; this is
remedied with Model 3 in Section 4.3.

Parameter | ATP 1st Serve | ATP 2nd Serve
a 0.11 -0.05
f -0.25 0.01
w -0.05 -0.14
m -0.14 -0.22

Table 5: Correlation coefficients between 2022 ATP player ranking points and the posterior
estimates of a, f,w, m for first and second serves.

Now, although the previous analyses are informative, it is obviously the case that player
excellence is a function of various skills. To investigate the combination of skills, we carry
out a regression analysis of the previously mentioned Pepperstone points against the vari-
ables (a;1, fi1, wi1, M1, Giz, fio, Wiz, M) where the second subscript in the pair of subscripts
refers to serve number. Retaining only the significant variables, we obtain the fitted equa-

tion
y = 7530 + (19832)a; — (14168) f1 — (25817)my (12)
where the correlation between the fitted line and the Pepperstone points is an improved
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r = 0.50. Table 6 provides the full regression results where we note that the parameters as
and fo are nearly significant.

Term Estimate Std Error P-value
Constant 7530 1984 0.0003
ay 19832 6799 0.004
fi -14168 5628 0.001
Wy 17933 20147 0.376
my 4964 12139 0.684
a9 15401 8122 0.061
fa -43920 24273 0.074
Wy -22918 24976 0.361
ma -25817 12223 0.037

Table 6: Full regression results for the fitted model presented in (12).

Equation (12) can assist in player evaluation. For example, suppose that a player has
first serve ace percentage a; = 0.08. The player’s points might be expect to rise by 199
points if they could increase their first serve ace percentage to a; = 0.09. However, it
must be kept in mind that there are reasonable restrictions (see Figure 2) as to the extent
that one might increase their first serve ace percentage. It is interesting that the fitted
equation (12) contains the characteristics ay, f; and msy. Although the inclusion of a; and
f1 appear obvious, it is worth considering why mistakes occurring on the second serve ms
are important whereas mistakes on the first serve m; are not important. Our data reveal
that 72% of first serves involve T' = 3 touches or less. When there are only 7' = 3 touches,
this means that mistakes of the type m; can only be made on the second or third touches.
After a powerful serve, the second touch (i.e. the receiver’s return) will be difficult, and
therefore, mistakes m; will be made at a high rate. Conversely, on the third touch, the
server will continue to benefit from the serve as mistakes m; will occur at a low rate. These
two phenomena will tend to cancel each other out, and this is why m; is not statistically

significant. Again, the importance of touch number is considered in Section 4.3.
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4.3 Analysis of Model 3

The enhancement of Model 2 to Model 3 involves the introduction of return characteristics
w,r,m that vary according to touch number. With the player characteristics ¢, and the
© O n®  The motivation is that the effect

A S 1

touch number ¢, this leads to parameters w
of the serve dissipates as the rally progresses. We wish to quantify the effect.

We use the same prior distribution as given in (10) and (11) for each touch ¢ = 2,3, ....

CINCINC

characteristics w®, r® m® For the ATP and WTA datasets, we plot the estimates of the
winner probability w® with respect to the touch number ¢ in Figure 6. We do this for both

We then average posterior estimates of w over all players 7 to give varying return

first and second serves. For both men and women on first serves, we observe that the server
retains an advantage in hitting a winner on touches 7" = 3 and 7" = 5. The advantage
then quickly dissipates on subsequent touches for the server where the posterior probability
of a winner approaches the prior mean probability. This is expected since there are fewer
cases of long rallies. For example, the number of cases where 7" = 15 in the ATP first serve
dataset is only n = 2,245. We also observe that as the rally continues, the probability
of the server and the receiver hitting a winner is the same. On second serves, the lines
are flatter. This is expected since second serves are more cautious and provide less of an
advantage.

Analogous to Figure 6, we plot the estimates of the mistake probability m®) with respect
to the touch number ¢ in Figure 7. Here, we observe that the server’s mistake probabilities
(t odd) increase only slightly with touch number. This seems intuitive as mistakes are
exaggerated when a player is put in difficult situations, and there are no touch numbers
where the server is consistently in distress. We also observe that mistake probabilities
decrease for the receiver (¢ even) as the rally continues with stabilization around T = 6.
This is the point at which the residual influence of the serve has dissipated. Again, the
effects are less pronounced in second serve scenarios.

Under the higher parameterization associated with Model 3, computational demands
increase. Running Stan with 2000 iterations using the men’s first serve dataset requires

roughly 18 hours of computation on a laptop computer.
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Figure 6: Plot of the posterior estimate w® versus ¢ according to Model 3 with respect to
the ATP data (top row plots) and WTA data (bottom row plots). The left plots concerns
t odd (server) and the right plots concerns ¢ even (receiver).

4.4 Model Assessment

We have introduced increasingly complex models that take into account the physical realities
of tennis. However, we would like to see that statistical diagnostics confirm that Model 3
is better than Model 2 which in turn is better than Model 1.

In Table 7, we provide the Widely Applicable Information Criterion (WAIC) as described
by Watanabe (2010) from running the three proposed models. WAIC is an appealing
statistic since it penalizes model complexity; it therefore provides a balance between fit
and parsimony. The WAIC approach requires the storage of log-likelihood values, and as
a consequence, the fitting comparison is computationally intensive. We have therefore fit
the models using only the most recent 10,000 observations from the ATP dataset based on
first serves. Smaller values of WAIC provide evidence of better model fit. From Table 7,
as expected, we observe that Model 3 is best, followed by Model 2 and then followed by
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Figure 7: Plot of the posterior estimate m® versus t according to Model 3 with respect to
the ATP data (top row plots) and WTA data (bottom row plots). The left plots concerns
t odd (server) and the right plots concerns ¢ even (receiver).

Model 1. The improvement between Model 3 and Model 2 is greater than the improvement
between Model 2 and Model 1. This highlights the importance of recognizing that point
probabilities change as the rally progresses.

In an MCMC application, it is important to assess practical convergence of the algo-
rithm. For the most complex model (Model 3), we experimented with different initial values
of the parameters. In each case, we obtained the same posterior estimates. In addition, the
Gelman-Rubin R statistic (Gelman and Rubin 1992) exceeds 0.998 across all parameters
and this is indicative of practical convergence. Gelman et al. (1996) consider the assessment

of model fit using discrepancy measures involving the posterior predictive distribution.
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Model \ WAIC
Model 1 | 53869.7
Model 2 | 53208.6
Model 3 | 50813.1

Table 7: WAIC for the three models to assess fit.

4.5 Investigations via Simulation

A feature of our models is that they permit novel investigations of prediction between two
players. With Model 3, we have a detailed description of how the game is played at the
player level.

To illustrate the utility of Model 3, we have simulated 10,000 matches between Novak
Djokovic and Rafael Nadal, two current and prominent players on the ATP tour. Djokovic
has often been referred to as the “GOAT” of tennis, the greatest of all time. Nadal has been
a main rival of Djokovic during the Djokovic era. We have used the estimated parameters
corresponding to Djokovic and Nadal for both the first and second serves, and have coded
functions to simulated outcomes at the point level, the game level, the set level and the
match level taking into account the scoring system in tennis. In these simulations, we have
determined the match winner as the first player to win two sets.

Although investigations are only limited by our imagination, in Table 8, we provide
various predictions based on the simulation. We also report what happened in reality based
on the 50 matches in our dataset that took place between Djokovic and Nadal during the
period 2006-2022. We observe that Djokovic and Nadal are closely matched where a slight
advantage is given to Djokovic. In the simulation, Djokovic’s point advantage propogates
to a greater advantage in games, to a greater advantage in sets, and to a greater advantage
in matches. The prediction results also agree closely with actual results. The exception to
this involves the prediction of points won. We believe that the points won predictions are
too high for both Djokovic and Nadal. The reason is that estimation was based on results
against many opponents, and hence, parameter estimates may be thought of as estimates
against an average opponent. In the case of Djokovic’s points against Nadal, Nadal is not
an average opponent. For example, with Djokovic serving, there would be occasions where

Djokovic may hit a winner against an average opponent, but Nadal would be able to reach
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the shot. We believe that what occurs on touches t = 1, 3,5, ... is more influential in terms
of points won than what occurs on touches t = 2,4, 6, ... due to the decreasing importance

of the serve as the touch number ¢ increases.

Prediction Event Djokovic Prediction | Djokovic Reality
Points won - Djokovic serving 73.4% 62.5%
Points won - Nadal serving 27.8% 39.4%
Games won 51.1% 50.7%
Sets won 54.3% 50.4%
Matches won 55.1% 52.0%

Table 8: Prediction percentages between Djokovic and Nadal based on simulations involving
Model 3. The third column is the observed percentage from the 50 actual matches between
the two players.

Via the simulation, we also investigate various exotic predictions between Djokovic and
Nadal that are not routinely discussed in the media. For example, the simulation model
predicts that 24.5% of sets will lead to tiebreaks. We also predict rally length distributions
of P(T =1) =031, P(T'=2) =0.18, P(T = 3) = 0.08, and P(T > 4) = 0.43 which we
compare against observed proportions 0.32, 0.15, 0.11, and 0.42, respectively. It is evident
that Djokovic and Nadal have longer rallies than what one normally sees in men’s tennis
(Carboch, Placha and Sklenarik 2018).

We note that the simulation procedure also has practical value in “what-if” scenarios
for training. A player could predict their probability of winning a match against an average
opponent. Then, the player can investigate what might happen if through training, they
were able to improve some of their playing characteristics as expressed via the parameters.
It would be a simple matter to re-run the simulation, changing some parameters to new

values.

5 DISCUSSION

Using a massive dataset of coarse observations in tennis, we have proposed models that

describe various features of the sport. These features are explored with respect to both the
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men’s and women’s games, and with respect to both the first and second serves.

An instructive aspect of this research is that players have their own playing characteris-
tics a and f corresponding to the serve, and their characteristics w® and m® corresponding
to touch T' = t. These probabilities summarize all components of a player’s game, and can
be viewed with the purpose of evaluation with respect to average player performance.

Also, given these estimated parameters, one can use simulation techniques to investigate
all sorts of interesting questions. For example, one may simulate matches between two
competitors to obtain the probability of a match lasting beyond two sets. As another
example, one may be interested in the probability that a player breaks service in a particular
match. With parameters describing inter-related aspects of tennis, the models provide great
scope for analysis both at the game level and the player level.

In terms of future directions, it would be interesting to see how characteristics vary
across different surfaces (e.g., grass, clay and hardcourt). With fewer matches (and data)
on grass, one may extend the proposed hierarchical models where grass parameters are
related to hardcourt parameters, for example. More work could also be done on identifying
aspects of the game which make players truly exceptional. In this paper, the framework has
been proposed to address extended questions such as these that have not been previously
investigated. It may also be possible to consider a single model rather than separate models
for first and second serves. Here, we imagine the introduction of a correlation structure
between each of the model parameters corresponding to first and second serves.

A further avenue for model enhancement concerns the parameters which were estimated
based on a player’s history against many opponents. In Model 2 and Model 3, these
parameters have a subscript ¢ corresponding to the player of interest who is involved in the
shot. However, it is apparent that these probabilities are also impacted by i’s opponent
(see Table 6). It would be useful to incorporate this feature in enhanced future models.

It may also be possible to introduce physical constraints in Model 3 which we believe
(t) (t+2) (t+2) oy

(t)
s < w; and m;” > m,;
) for t odd. However, the implementation of such

to be true. For example, we may be able to impose w

) > w§t+2) ) < ml(t+2

even, and wlgt and mgt
constraints in Stan may not be straightforward.

Finally, for simulation purposes, we are typically interested in the current form of a
player. It may be useful to extend the model so that more weight is placed on recent

matches. Such models be employed to investigate the longitudinal profile of a player.
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