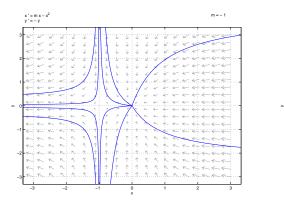
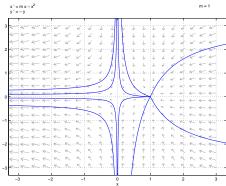
Solutions 7

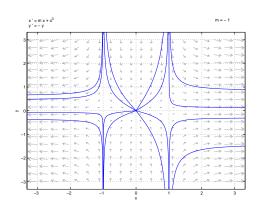
8.1.1

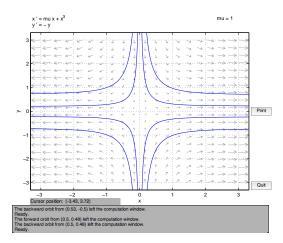
a) The stable fixed points are (0,0) for $\mu \leq 0$ and $(\mu,0)$ for $\mu > 0$. The eigenvalues are $-|\mu|, -1$. Fixed points exchange stability through the bifurcation.





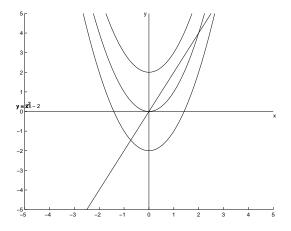
b) For $\mu < 0$, the origin (0,0) is a stable fixed point; the other two (unstable) fixed points are $(\pm \sqrt{-\mu}, 0)$. For $\mu > 0$ the only fixed point is the origin, which is unstable. The eigenvalues at (0,0) are $\mu, -1$, and the eigenvalues at $(\pm \sqrt{-\mu}, 0)$ are $-2\mu, -1$. The origin loses stability through the bifurcation.





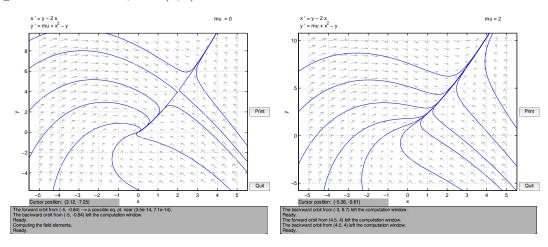
8.1.6

a) The nullclines are drawn for $\mu = -2$, 0, and 2.



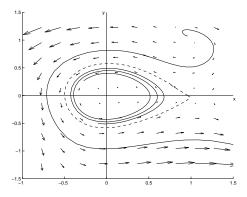
b) The fixed points are the intersections of the nullclines. From the above picture it's clear that as μ increases, two fixed points first collide then disappear. The collision occurs when the parabola $y = x^2 + \mu$ is tangential to the line y = 2x. Since the slope of the tangent line of the parabola at point $(t, t^2 + \mu)$ is 2t, if the tangent line is y = 2x, then t = 1. Therefore $y = x^2 + \mu$ is tangential to y = 2x at point $(1, 1 + \mu)$, which implies that bifurcation occurs at $\mu = 1$. The motion of the fixed points described above also shows that this is a saddle-node bifurcation.

c) For $\mu < 1$ we have two fixed points with $x_* = 1 \pm \sqrt{1 - \mu}$, for $\mu > 1$ there are no fixed points. Sketched below are phase portraits for $\mu = 0 < 1$ and $\mu = 2 > 1$. On the left, the origin is a stable node, and (2,4) is a saddle.

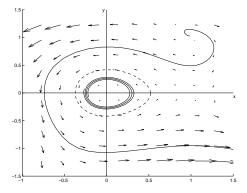


8.2.3

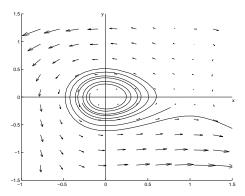
We start with a negative μ very close to 0. The figure below shows the phase portrait for $\mu = -0.04$, there is an unstable cycle around the origin:



As μ increases to -0.02, the cycle gets closer to the origin:



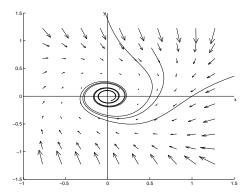
Now if μ becomes positive, the unstable limit cycle disappears and the origin becomes unstable:



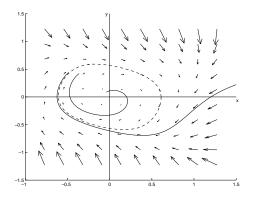
Therefore our computer experiment suggests that this Hopf bifurcation is subcritical.

8.2.6

When μ is negative, say $\mu = -0.04$, the phase portrait looks like

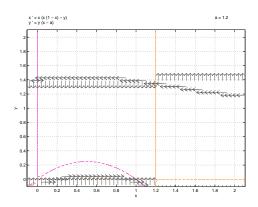


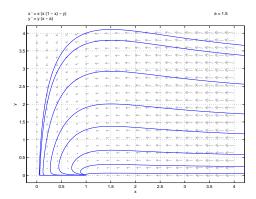
The origin is a stable spiral. Now let $\mu = 0.4$ be a small positive number, then a stable limit cycle appears, and the origin becomes an unstable spiral:



This experiment suggests that the Hopf bifurcation is supercritical.

8.2.8 a,c) We show below the nullclines in the first quadrant (left) and the phase portrait for a=1.2 (right). We can see that all the predators go extinct $(y\to 0)$.





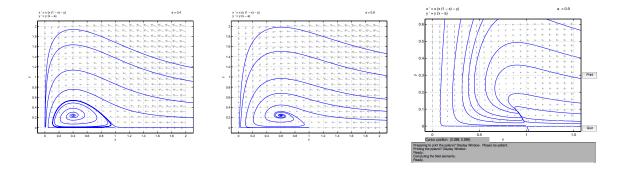
b) The Jacobian $A=\begin{pmatrix}2x-3x^2-y&-x\\y&x-a\end{pmatrix}$ evaluates to $\begin{pmatrix}0&0\\0&-a\end{pmatrix}$ for the origin. The eigenvalues are 0,-a and it is a non-isolated fixed point.

A evaluates to $\begin{pmatrix} -1 & -1 \\ 0 & 1-a \end{pmatrix}$ for (1,0). The eigenvalues are -1,1-a. It is a stable node for a>1 and a saddle for a<1.

Finally, A evaluates to $\begin{pmatrix} a-2a^2 & -a \\ a-a^2 & 0 \end{pmatrix}$ for $(a,a-a^2)$. The eigenvalues are $\frac{a(1-2a\pm\sqrt{4a^2-3})}{2}$ and the fixed point is an unstable spiral when $0 \le a < \frac{1}{2}$, a stable spiral when $\frac{1}{2} < a < \frac{\sqrt{3}}{2}$,

a stable node for $\frac{\sqrt{3}}{2} < a < 1$ and a saddle when a > 1.

- d) A supercritical Hopf bifurcation occurs at $a_c = \frac{1}{2}$, when the real parts of the eigenvalues simultaneously cross the imaginary axis into the right half plane. See the phase portraits in part f).
 - e) Near $a_c = \frac{1}{2}$, the frequency of the limited cycle oscillation is about $a_c \frac{\sqrt{3-4a_c^2}}{2} = \frac{1}{2\sqrt{2}}$.
- f) We show the phase portraits for a=0.4 (left), a=0.6 (middle), and a=0.9 (right). The qualitatively different phase portraits correspond to the cases when the fixed point $(a, a-a^2)$ is (a) an unstable spiral surrounded by a stable limit cycle, (b) a stable spiral, and (c) a stable node.



8.4.2

The radial and angular dynamics are uncoupled and so can be analyzed separately. Treating $\dot{r}=r(\mu-\sin r)$ as a vector field on the line, we see that for $|\mu|>1$, $r^*=0$ is the only fixed point and it is stable for $\mu<-1$ and unstable for $\mu>1$. At $\mu=-1$, the system undergoes a saddle node bifurcation of cycles at $r^*=(2n+\frac{3}{2})\pi$. For $-1<\mu<0$, $r^*=0$, $(2n-1)\pi-\arcsin\mu$, $2n\pi+\arcsin\mu$. The stabilities of fixed points alternate with increasing r^* , starting with $r^*=0$ being stable. At $\mu=0$ the zero fixed point undergoes a supercritical Hopf bifurcation and a new cycle $r^*=\arcsin\mu$ emerges. For $0<\mu<1$, $r^*=0$, arcsin μ , $r^*=0$, arcsin μ , $r^*=0$ being unstable. Subsequently, the system undergoes another saddle node bifurcation of cycles when $\mu=1$ in which pairs of adjacent fixed points [arcsin μ , π – arcsin μ], π – arcsin π , π – arcsin π . Since the motion in the π -direction is simply rotation at constant angular velocity, we see that all trajectories spiral asymptotically to or from limit circles at $r=r^*$.

9.2.1

a) Recall that the fixed points C^+ and C^- are

$$(x^*, y^*, z^*) = (\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1),$$

where r > 1. In the following we'll write (x, y, z) instead of (x^*, y^*, z^*) .

The Jacobian
$$A=\left(\begin{array}{ccc} -\sigma & \sigma & 0\\ r-z & -1 & -x\\ y & x & -b \end{array}\right)$$
 has characteristic polynomial

$$\det(\lambda I - A) = \lambda^3 + (\sigma + 1 + b)\lambda^2 +$$
$$[b(\sigma + 1) + x^2 + \sigma(z + 1 - r)]\lambda + [b\sigma(z + 1 - r) + \sigma(x^2 + xy)].$$

Notice that at C^+ and C^- , we have $x^2 = xy = b(r-1)$, z = r-1, therefore the eigenvalues satisfy

$$\lambda^3 + (\sigma + 1 + b)\lambda^2 + b(r + \sigma)\lambda + 2\sigma b(r - 1) = 0.$$

b) Hopf bifurcation occurs when two eigenvalues are pure imaginary (cf. Figure 8.2.4). In this case $\lambda = i\omega$, where ω is real and nonzero. Thus the characteristic equation becomes

$$-i\omega^3 - (\sigma + 1 + b)\omega^2 + ib(r + \sigma)\omega + 2\sigma b(r - 1) = 0.$$

We then seperate the real part and the imaginary part of the above and obtain that

$$\omega^2 = b(r+\sigma) = \frac{2\sigma b(r-1)}{\sigma+1+b}.$$

Solving for r, we get

$$r = r_H = \sigma(\frac{\sigma + b + 3}{\sigma - b - 1}).$$

It is required that r must be positive, so Hopf bifurcation can only occur if r_H is positive, i.e. $\sigma > b + 1$.

c) If $r = r_H$, then the two imaginary roots are

$$\lambda_{1,2} = \pm i \sqrt{b(r_H + \sigma)}$$
.

It's well known that all 3 roots should add up to $-(\sigma + b + 1)$, since the two imaginary ones cancel, we have $\lambda_3 = -(\sigma + b + 1)$.

9.2.2

Let
$$C(t) = rx(t)^2 + \sigma y(t)^2 + \sigma(z(t) - 2r)^2$$
 be the value of C at time t . Then
$$C'(t) = 2rxx' + 2\sigma yy' + 2\sigma(z - 2r)z'$$
$$= 2rx\sigma(y - x) + 2\sigma y(rx - y - xz) + 2\sigma(z - 2r)(xy - bz)$$
$$= -2\sigma(rx^2 + y^2 + bz^2 - 2brz)$$
$$= -2\sigma(rx^2 + y^2 + b(z - r)^2 - r^2b)$$
$$= -\frac{2\sigma}{r^2b}(\frac{x^2}{br} + \frac{y^2}{br^2} + \frac{(z - r)^2}{r^2} - 1).$$

It is then clear that if at time t, (x, y, z) is outside the ellipsoid

$$K: \quad \frac{x^2}{br} + \frac{y^2}{br^2} + \frac{(z-r)^2}{r^2} \le 1,$$

then C(t) will decrease. We can pick C so large that the above ellipsoid is contained in

$$E: \quad rx^2 + \sigma y^2 + \sigma (z - 2r)^2 \le C,$$

which is another ellipsoid, then eventually all trajectories will enter E.

The smallest possible value of C is obtained when the ellipsoids E and K are tangent. The picture is that one shrinks E by decreasing C until the surface of E touches K. This is equivalent to the following problem:

Given condition

$$\frac{x^2}{br} + \frac{y^2}{br^2} + \frac{(z-r)^2}{r^2} = 1,$$

find the maximum of

$$rx^2 + \sigma y^2 + \sigma (z - 2r)^2.$$

The maximum is the smallest possible C. This problem can be solved using Langrange multipliers. In practice, given a pair of parameters r and σ , one can use a computer to handle the extreme value problem.

9.2.6

a) Let $\mathbf{f} = (-\nu x + zy, -\nu y + (z-a)x, 1-xy)$ be the instantaneous velocity, then

$$\nabla \cdot \mathbf{f} = \frac{\partial}{\partial x} (-\nu x + zy) + \frac{\partial}{\partial y} (-\nu y + (z - a)x) + \frac{\partial}{\partial z} (1 - xy)$$
$$= -\nu - \nu + 0 = -2\nu < 0,$$

therefore the system is dissipative (cf. Figure 9.2.1).

b) A fixed points (x, y, z) satisfies that

$$(1) zy = \nu x$$

$$(2) (z-a)x = \nu y$$

$$(3) 1 = xy.$$

From (1) and (3) we have $z = \nu x^2$, then use (2)

$$(\nu x^2 - a)x^2 = \nu xy = \nu.$$

Since xy = 1, $x \neq 0$, so

$$a = \nu x^2 - \nu x^{-2} = \nu (k^2 - k^{-2}),$$

where $x^2 = k^2$, xy = 1, and $z = \nu x^2$. This is exactly the parametric form described in the problem.

c) The Jacobian
$$A=\begin{pmatrix} -\nu & z & y\\ z-a & -\nu & x\\ -y & -x & 0 \end{pmatrix}$$
 evaluates to $\begin{pmatrix} -\nu & \nu k^2 & k^{-1}\\ \nu k^2-a & -\nu & k\\ -k^{-1} & -k & 0 \end{pmatrix}$ at fixed

point $(k, k^{-1}, \nu k^2)$. The characteristic polynomial is

$$f(\lambda) = \lambda^3 + 2\nu\lambda^2 + [\nu^2 - \nu k^2(\nu k^2 - a) + k^2 + k^{-2}]\lambda + 2\nu(k^2 + k^{-2}).$$

Using the relation $a = \nu(k^2 - k^{-2})$ to eliminate a, it follows that

$$f(\lambda) = \lambda^3 + 2\nu\lambda^2 + (k^2 + k^{-2})\lambda + 2\nu(k^2 + k^{-2}) = (\lambda + 2\nu)(\lambda^2 + k^2 + k^{-2}).$$

Therefore the eigenvalues are -2ν and $\pm\sqrt{k^2+k^{-2}}i$. Since there are two imaginary eigenvalues, the fixed points are centers.