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Abstract

We are interested in examining sets of 2-colorings of the set of positive
integers that avoid long monochromatic arithmetic progressions having odd
common difference. Here we give a lower bound for the number of 2-colorings
of the interval [1,m] of positive integers that avoid monochromatic arith-
metic progressions of certain length having odd common difference. Also, we
give a non-periodic 2-coloring of the set of positive integers that avoids long

monochromatic arithmetic progressions having odd common difference.
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1 Introduction

The questions we address are of the following type: If a set of finite colorings
with a certain property is given, what can we say about its size and its
intersections with other sets of finite colorings?

Let N be the set of positive integers, let Ny = NU {0}, and let [,] form
closed intervals in Ny. For r € N, an r-coloring of N is a map f : N — A,
with |A| = r. A coloring is an r-coloring for some r. If f is a coloring of N
and if B C N satisfies |f (B)| = 1, we say that B is f-monochromatic. An
arithmetic progression of length £ and common difference d, k,d € N, is a
set of the form {a + (i — 1)d : i € [1, k]}, for somea € N.

Van der Waerden’s theorem [3] on arithmetic progressions says that for
any coloring f and any k£ € N there is an f-monochromatic arithmetic pro-
gression of length k. Brown, Graham, and Landman in [1] study subsets L of
N such that van der Waerden’s theorem can be strengthened to guarantee the
existence of arbitrarily long f-monochromatic progressions having common
difference in L.

For r € N\{1} we say that L, L C N, is r-large if every r-coloring yields
arbitrarily long monochromatic progressions having common differences in
L. We say that L is large if it is r-large for every r. Perhaps surprisingly,
there are many large sets; for example, for any m € N, the set mN is large.

On the other hand, it is known that 2N — 1 is not 2-large. One can see
that, for n € N\ {1}, the coloring

fn:N—={0,1}



defined by
hi)=0 < (FHteNy)ie2n—1t+1,(2t+1)(n—1)])

avoids n-term f,-monochromatic arithmetic progressions having odd com-
mon difference. Clearly, f, is periodic with the period 2 (n — 1).

Actually, 2N—1 fails the condition that any r-large set contains an infinite
number of multiplies of any integer.

Another example of a set that is not 2-large is Nl = {n! : n € N}. This

set fails the condition that, for any r-large set L = {ay, }nen,

On+1 1

lim sup
n— 00 an

Brown, Graham, and Landman have conjectured that any 2-large set is
large. It seems that this simply stated conjecture is difficult to prove or
disprove and that the answer can go either way.

The only distinction between the known properties of the family of large
sets and the family of 2-large sets is the ” Ramsey property.” It is known that
the family of large sets has the Ramsey property, i.e., if L; U Ly is large then
at least one of L, and Lo is large. It is an open question if the family of
2-large sets has the Ramsey property.

Thus, one way to approach the conjecture is to try to find two sets that
are not 2-large and to show that their union is 2-large. Brown, Graham, and
Landman suggest that 2N— 1 and N! could be such sets. It is not difficult to
see that (2N — 1) U NI satisfies both of the necessary conditions mentioned
above.

It is known that (NI — 1) UNI' U (N! 4 1) is not 2-large.



We note that if y is a periodic 2-coloring of N with a period 7', then the
set {1+¢-T!:i € N} is y-monochromatic. Regarding to the problem if
(2N — 1) UN! is 2-large, this observation naturally leads to the following two

questions.

1. Is there a non-periodic 2-coloring that avoids long monochromatic arith-

metic progressions having their common differences in 2N — 17

2. Generally, for a given interval of positive integers, how many 2-colorings
that avoid monochromatic arithmetic progressions of a given length and

having their common differences in 2N — 1 are there?

In this paper we discuss the questions above.

Let Kon_1 be the set of all 2-colorings of N with the property that there
are no arbitrarily long monochromatic progressions having odd common dif-
ference.

In Section 2 we construct a family of subsets of Kon_1. Also, we show
that there are non-periodic elements of Kon_j.

In Section 3, for certain values of m, we give a lower bound for the number
of 2-colorings of the interval [1,m] that avoid monochromatic arithmetic

progressions of a given length having odd common difference.

2 A set of 2-colorings

We start with a lemma.

Let p € N\ {1} be given.



Lemma 1 Let a € [1,2(2p—1)] and let | € [0,2(p—1)]\{p—1}. There
are i € [0,2p—1], j € [1,p], and k € [2p,2 (2p — 1)] so that

a+i(2l+1)=2j (mod 2p)

and
a+i(2l+1)=k (mod2(2p—1)).
Proof. Let
{a,a+ (2l +1)} N2N = {a}

Suppose that there is ¢ € [1,p — 1] so that

(Vie[0,q]) ki€ [1,2p—1]) a+2i(2l+1)=k; (mod 2(2p —1)).

Since 2 (21 4+ 1) Z0 (mod 2 (2p — 1)) we have that

k1 # ko.
From, for all 4,7 € [0, ¢
i#7 = ki F#ky
and the fact that k; is even it follows that
qg<p-—1.
Therefore, there are i € [0,p — 1] and k € [2p,2 (2p — 1)] so that

a+2i(20+1)=k (mod2(2p—1)).m

Let M’ be the set of two colorings such that f € M if and only if the
following three conditions are satisfied.
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L. f(2k) = fo,(2F), for all k.
2. There is an odd number N = N(f), not greater than 2p — 1, so that

f(2kp+ N) = fo,(2kp + N) for all k.

3. For all j not greater than 2p — 1
f(2k(2p — 1) + j) = fop(2k(2p — 1) + j), for all k.

For example, for fg and N = 5 we have that f € M’ for i € [7,19] is
given by

1 78 9 10 11 12 13 14 15 16 17 18 19
fe(7) 1111 0 0O O 0O O 1 1 1 1
f@) =1 = 1 0 0 0 0 0 1 1 1 =

Theorem 2 M C Koy ;.

Proof. Let f € M, and let a and [ be any nonnegative integers. We

prove that

{a+i(204+1):i€[0,2p—1]}

is not f monochromatic.

Let a' € [1,2(2p — 1)], and let I' € [0,2 (p — 1)] be so that
a=d (mod2(2p—1)) and [=1" (mod (2p—1)).
If I' #p—1, by Lemma 1 there is i € [0,2p — 1] so that
d +i1(2' +1) €2N and fy, (' +i(20' +1)) =1.
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This means that

fla+i(2l+1)) =1.

On the other hand

1 < Hiel0,2p—1]: fyp(a+i(20+1)) =0} <

i€ [0,2p—1]: f(a+i(20+1)) =0}

Therefore, K is not f-monochromatic.

Ifl'=p—1then 2I'+1=2p—1 and

Jop (@' +i(2p—1)) # fop (@' + (i+1)(2p—1)), forall i € [0,2p —2].

Note that
a+i1(2p—1)=N (mod 2p) and i € [0,2p — 1]
implies
(i—1,i4+1}n[0,2p — 2] # ¢,
Thus, {a'+i(2p — 1) : i € [0,2p — 1]} is not f-monochromatic. ]

The following corollary gives a way to construct a non-periodic elements

of ’C2N71 .
Corollary 3 Let g be a non-periodic 2-coloring of Ny and let
f:N—{0,1}

be defined by

9 (5onh) n=(+1) (mod2p(2p-1)
fop (0) otherwise

Then f is non-periodic and f € M,



An example of a non-periodic 2-coloring of N is the Morse sequence. See,
[2].

Also, we note that for any f obtained in this way, there are arbitrarily
long monochromatic progressions having their common differences in N!.

It is not difficult to see that, if M} is the set of all 2-colorings so that
f € M) if and only if

L. f(2k —1) = f5,(2k — 1), for all k;

2. there is an even number N = N(f), not greater than 2p, so that

f(2kp+ N) = fo,(2kp + N) for all k;

3. for all j € [2p,2(2p — 1)]
FRED 1)+ ) = fap(2k(2p — 1) + ), for all k
then
M C Kon-1.

Therefore,

M, = {X 1= xkn (M;’; UM;,;’) # ¢} C Kan-1-

We note that the elements of M, permit monochromatic (2p — 1)-term arith-

metic progressions having common difference 1.

3 The Lower Bound

One can see the facts given in the previous section in the following way. Let

us represent the coloring f, as an array A, = {ai,j}(i with 2p

aj)ENO X [172p]
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columns and an infinite number of rows and with a; ; € {0,1} as its entries.
We put
Qi 5 = 1 & fgp (22p+]) =1.

The fact that MI’, C Kon_1 means that any 2-coloring, represented by an
array that is obtained from A, by changing any number of 1’s into 0’s in
all odd columns except at least one, belongs to M. Similarly, a 2-coloring,
represented by an array that is obtained from A, by changing any number
of 0’s into 1’s in all even columns except at least one, belongs to M.

This “visualization” of the elements of M, U M leads to the following

fact.

Theorem 4 For any non-negative integers k and p, the number of 2-colorings
of the interval [1,2kp (2p — 1)] that avoid monochromatic 2p-term arithmetic
progressions having common differences in 2N—1 and that permit monochro-
matic (2p — 1)-term arithmetic progressions having common difference 1 is

not less than
4 (Qkp(pfl) _ (Qk(pfl) — 1)”) —9.

Proof. The claim is obviously true if p = 1.

Let p > 2 and let us consider an array AY obtained from the first & (2p — 1)
rows of A,. In each odd column of A’; there are kp entries equal to 0. We
note the fact that if exactly ¢, ¢ € [1,p — 1], odd columns are unchanged then

there are exactly
(28D — 1)’”

different ways to change 1’s into 0’s in the rest p — 7 odd columns. Thus, we
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have that there are

p—1 )
Z p (201 — )P0 = gl D) _ (gh1) _1)P g
i=1 \

different & (2p — 1) x 2p arrays that can be obtained by changing 1’s into 0’s
in odd columns of A’; and leaving at least one odd column unchanged.

Similarly, there are

2kP(=1) _ (k-1 _1)P

different k (2p — 1) x 2p arrays that can be obtained by changing 0’s into
1’s in even columns of A’; and leaving at least one even column unchanged.
Taking into account the array A’; and the definition of M,, we have that the
number of 2-colorings of the interval [1,2kp (2p — 1)] that avoid monochro-
matic 2p-term arithmetic progressions having common differences in 2N — 1
and that permit monochromatic (2p — 1)-term arithmetic progressions hav-

ing common difference 1 is at least
2 (2 (2’“1’(1’—” (kD _1)P 1) + 1) =4 (2’“1’(1’—” — (2k0-D) - 1)”) o
An immediate consequence of Theorem 4 follows.

Corollary 5 If p, m € N are so that
P

ep P! H (20—1)|m,
e

where €9 = 2 and €, = 1 otherwise, then there are at least

P i—1)m i—1)m ]
2 (22 <2((—)> . (2% . 1)) . 1)
=1

2-colorings of the interval of [1, m] that avoid monochromatic 2p-term arith-

metic progressions having common differences in 2N — 1.
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Proof. The claim is obviously true if p = 1.

Let p > 2. Since
20 (2¢ — 1) |m for all I € [1,p]

by Theorem 4, the number of 2-colorings that avoid 2i-term monochromatic
arithmetic progressions having common differences in 2N — 1 and that per-
mit monochromatic (2¢ — 1)-term arithmetic progressions having common

difference 1 is at least

(i-1)m nm .
4 <22(2i—1) — (221(2Z 1 — 1) ) - 2.

Also, for any i € [2, p], there are at least two 2-colorings of [1,m] that avoid
(27 — 1)-term monochromatic arithmetic progressions having common differ-
ence in 2N — 1 and that permit a monochromatic 2 (i — 1)-term arithmetic
progression having common difference 1.

Therefore, the number of 2-colorings of the interval of [1,m] that avoid
monochromatic 2p-term arithmetic progressions having common differences

in 2N — 1 is at least

i—1)m (i—1)m i
(22 ( 2(2; (22i(2i1—1) — 1) ) —p) + 2 (p — 1)
~ 9 (22(2%_ (25’(23)73—1)3 —1> .
=1

It is not difficult to verify that, for p and m as in the corollary

i m i 2
(i [1p]) 255 — (2465 1)’ > 985,
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From the fact that
SN (i — 1) 1
7/ —_— —
= 2i(2i—1) " 5

we have that for p > 8 and m as in the corollary, the number of 2-colorings of
the interval [1,m] that avoid 2p-term monochromatic progressions with odd

common difference is greater than
4(p—T7)2% + 26.
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