# OPMT 5701 # # Homework 6b: Derivatives of ln(x) and exp(x); # # Question 1 # > y:=ln(2*x^2-3); > dy:=diff(y,x); # Question 2 > y:=ln(sqrt((x-1)/(x+1))); > dy:=diff(y,x); > simplify(%); # Question 3 > y:=ln(((x^2+5)^5)*((3-4*x)^4)); # Also write the function after applying the "rules" of Logathrims > y1:=5*ln(x^2+5)+4*ln(3-4*x); > dy:=diff(y,x); > simplify(%); > dy1:=diff(y1,x); # check to see if the two versions are the same > is(dy=dy1); # Question 4 > y:=x^3*ln(4*x+5); > dy:=diff(y,x); # Question 5: find y' for y := ln(x)/ln(x^2); # This is one that maple has a problem with. # > y:=(ln(x)/ln(x^2)); > dy:=diff(y,x); > simplify(%); > is(dy=0); # Now try entering the function after applying the "rules" of log > y1:=ln(x)/(2*ln(x)); # Question 6: # > y:=ln(sqrt(x^3+3*x-1)/sqrt(x^2+2*x-1)); > dy:=diff(y,x); > simplify(%); # Now try entering the function after applying the "rules" > y1:=(1/2)*ln(x^3+3*x-1)-(1/2)*ln(x^2+3*x-1); > dy1:=diff(y,x); > simplify(%); > is(dy=dy1); # Question 7 > y:=exp(ln(x^2)); > dy:=diff(y,x); # Question 8 > y:=x^2*exp(3*x); > dy:=diff(y,x); > factor(%); # Question 9 > y:=(-3)*exp(4*x^4-5*x+3); > dy:=diff(y,x); # Question 10 > y:=(x*exp(x))/(x+1); > dy:=diff(y,x); > factor(%); >