OPMT 5701

Additional Constrained Optimization Problems

Due: November 24, 2010

Instructions: Below are some additional applications of the lagrange method. Show all your work. These problems are due in lab

1. Maximize

$$u = 4x^2 + 3xy + 6y^2$$

subject to

$$x + y = 56$$

Find the utility maximizing values of x and y.

2. A firm produces two goods, x and y. Due to a government quota, the firm must produce subject to the constraint x + y = 42. The firm's cost functions is

$$c(x,y) = 8x^2 - xy + 12y^2$$

Find the cost minimizing values of x and y.

3. A firm wishes to minimize costs subject to an output constraint of $Q = Q_0$. The firm has a production function given by $Q = K^{1/2}L^{1/2}$. If w is the wage rate and r is the rental rate of capital, then the firm's goal is to minimize:

$$TC = wL + rK$$

subject to

$$Q_0 = K^{1/2} L^{1/2}$$

Write down the lagrange function for this problem. Find the cost minimizing values of K and L as functions of w, r and Q_0 .

4. Skippy lives on an island where she produces two goods, x and y, according the the production possibility frontier $72 = x^2 + y^2$, and she consumes all the goods herself. Her utility function is

$$u = \ln x + 3 \ln y$$

Find her utility maximizing x and y

5. A consumer has the following utility function: U(x,y) = x(y+1), where x and y are quantities of two consumption goods whose prices are p_x and p_y respectively. The consumer also has a budget of B. Therefore the consumer's maximization problem is

$$x(y+1) + \lambda(B - p_x x - p_y y)$$

- (a) From the first order conditions find expressions for x^* and y^* expressed as values of $P_x P_y$ and B. These are the consumer's demand functions. What kind of good is y? In particular what happens when $p_y > B/2$?
- 6. This problem could be recast as the following dual problem

Minimize
$$p_x x + p_y y$$
 subject to $U_0 = x(y+1)$

Find the values of x and y that solve this minimization problem expressed as values of $P_x P_y$ and U_0 .