OPMT 5701

Inequality Constraints Lab Assignment 11

1. Consider the case of a two-good world where both goods, x and y. are rationed. Let the consumer, Myrtle, have the utility function U = U(x, y). Myrtle has a fixed money budget of B and faces the money prices P_x and P_y . Further, Myrtle has an allotment of coupons, denoted C, which can be used to purchase both x or y at a coupon price of c_x and c_y . Therefore Myrtle's maximization problem is

Maximize

$$U = U(x, y)$$

Subject to

$$B \geq P_x x + P_y y$$

$$C \geq c_x x + c_y y$$

and the non-negativity constraint $x \geq 0$ and $y \geq 0$.

Suppose, for the budget, B = 12, $P_x = P_y = 1$ and for the coupons C = 24, $c_x = 4$, $c_y = 1$. Find the optimal x and y, value for U and which constraints are binding if Myrtle's utility function is:

- (a) U = xy
- (b) $U = x^2 y$
- (c) $U = \ln x + 2 \ln y$
- 2. Skippy lives on an island where she produces two goods, x and y, according the the production possibility frontier $400 \ge x^2 + y^2$, and she consumes all the goods herself. Skippy also faces and environmental constraint on her total output of both goods. The environmental constraint is given by $x + y \le 28$. Her utility function is

$$u = x^{1/2}y^{1/2}$$

- (a) Write down the Kuhn Tucker first order conditions.
- (b) Find Skippy's optimal x and y. Identify which constaints are binding.
- (c) Graph your results.
- (d) On the next island lives Sparky who has all the same constraints as Skippy but Sparky's utility function is $u = \ln x + 3 \ln y$. Redo a, b, and c for Sparky
- 3. An electric company is setting up a power plant in a foreign country and it has to plan its capacity. The peak period demand for power is given by $p_1 = 400 q_1$ and the off-peak is given by $p_2 = 380 q_2$. The variable cost to is 20 per unit (paid in both markets) and capacity costs 10 per unit which is only paid once and is used in both periods.
 - (a) write down the lagrangian and Kuhn-Tucker conditions for this problem
 - (b) Find the optimal outputs and capacity for this problem.
 - (c) How much of the capacity is paid for by each market (i.e. what are the values of λ_1 and λ_2)?
 - (d) Now suppose capacity cost is 30 per unit (paid only once). Find quantities, capacity and how much of the capacity is paid for by each market (i.e. λ_1 and λ_2)?
 - (e) Graph your answers in both cases