SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) If
$$f(x, y) = 4x^3y^2 + 3x^2y^4 - 7xy^2 + 4x - 3y + 2$$
, find (a) $f_X(x, y)$ and (b) $f_Y(x, y)$.

2) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ where $f(x, y) = x^3 e^2 y + y^2 \ln 3x$ and evaluate both derivatives at (1, 0).

3) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ where $f(x, y) = \frac{5xy^2}{(x^3 + y^3)}$.

4) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ where $f(x, y, z) = \frac{4y^3}{x^3 + y^2}$.

5) If
$$f(x, y, z) = x^2 \sqrt{y^2 + z}$$
, find (a) $f_X(x, y, z)$, (b) $f_Y(x, y, z)$, and (c) $f_Z(x, y, z)$.

6) If
$$f(x, y, z) = x^2yz^2 + xy^2z + xy$$
, then $f_x(1, 2, 3) =$

7) If
$$z = e^{x/y}$$
, then $\frac{\partial z}{\partial y} =$

8) A sporting goods store determines that the optimal quantity of athletic shoes (in pairs) to order each month is given by the Wilson lot size formula: $Q(C, M, s) = \sqrt{\frac{2CM}{s}}$, where C is the cost (in dollars) of placing an order, M is the number of pairs sold each month, and s is the monthly storage cost (in dollars) per pair of shoes. Find $\frac{\partial Q}{\partial C}$. Then find and interpret

$$\frac{\partial Q}{\partial C}\bigg|_{(100, 500, 3)}.$$

- 9) A company manufactures two products, X and Y, and the joint-cost function for these products is given by $c = 0.002(x + y)^2 + x + 0.25y + 8000$, where c is the total cost of producing x units of X and y units of Y. Determine the marginal cost with respect to x when x = 450 and y = 550.
- 9) _____
- 10) A company's production function is given by $P = 2.1L^{0.6}k^{0.4}$, where P is the total output generated by L units of labor and k units of capital. Determine:
- 10)

- (a) the marginal production function with respect to L
- (b) the marginal production function with respect to k