OPMT 5701 THE DERIVATIVE THE CHAIN RULE

In Problems 1-8, use the chain rule.

- *1. If $y = u^2 2u$ and $u = x^2 x$, find dy/dx.
- **2.** If $y = 2u^3 8u$ and $u = 7x x^3$, find dy/dx.
- 3. If $y = \frac{1}{x^2}$ and w = 2 x, find dy/dx.
 - 7. If $y = 3w^2 8w + 4$ and $w = 2x^2 + 1$, find dy/dx when
 - 8. If $y = 3u^3 u^2 + 7u 2$ and u = 5x 2, find dy/dxwhen x = 1.

In Problems 9-52, find y'.

*9.
$$y = (3x + 2)^6$$

10.
$$y = (x^2 - 4)^4$$

11.
$$y = (3 + 2x^3)^5$$

12.
$$y = (x^2 - x)^3$$

13.
$$y = 2(x^3 - 8x^2 + x)^{100}$$

14.
$$y = \frac{(2x^2+1)^4}{2}$$

15.
$$y = (x^2 - 2)^{-3}$$

16.
$$y = (2x^3 - 8x)^{-12}$$

17.
$$y = 3(2x^2 - 3x - 1)^{-10/3}$$
 18. $y = 4(7x - x^4)^{-3/2}$

18.
$$y = 4(7x - x^4)^{-3/2}$$

*19.
$$y = \sqrt{5x^2 - x}$$

20.
$$y = \sqrt{3x^2 - 7}$$

21.
$$y = \sqrt[4]{2x-1}$$

22.
$$y = \sqrt[3]{8x^2 - 1}$$

23.
$$y = 2\sqrt[5]{(x^3+1)^2}$$

24.
$$y = 3\sqrt[5]{(x^3-2)^4}$$

$$25. \ \ y = \frac{6}{2x^2 - x + 1}$$

26.
$$y = \frac{3}{x^4 + 2}$$

*27.
$$y = \frac{1}{(x^2 - 3x)^2}$$

28.
$$y = \frac{1}{(2+x)^4}$$

29.
$$y = \frac{2}{\sqrt{8x-1}}$$

$$30. \ \ y = \frac{3}{(3x^2 - x)^{2/3}}$$

31.
$$y = \sqrt[3]{7x} + \sqrt[3]{7}x$$

32.
$$y = \sqrt{2x} + \frac{1}{\sqrt{2x}}$$

33.
$$y = x^2(x-4)^5$$

34.
$$v = x(x+4)^4$$

35.
$$v = 4x^2\sqrt{5x+1}$$

36.
$$y = 2x\sqrt{1-x}$$

37.
$$y = (x^2 + 2x - 1)^3 (5x)$$

38.
$$v = x^2(x^3 - 1)^4$$

*39.
$$y = (8x - 1)^3 (2x + 1)^4$$

40.
$$y = (3x+2)^5(4x-5)^2$$

*41.
$$y = \left(\frac{x-7}{x+4}\right)^{10}$$

42.
$$y = \left(\frac{2x}{x+2}\right)^4$$

43.
$$y = \sqrt{\frac{x-2}{x+3}}$$

44.
$$y = \sqrt[3]{\frac{8x^2 - 3}{x^2 + 2}}$$

45.
$$y = \frac{2x-5}{(x^2+4)^3}$$

46.
$$y = \frac{(4x-2)^4}{3x^2+7}$$

47.
$$y = \frac{(8x-1)^5}{(3x-1)^3}$$

48.
$$y = \sqrt{(x-1)(x+2)^3}$$

49.
$$y = 6(5x^2 + 2)\sqrt{x^4 + 5}$$

50.
$$y = 6 + 3x - 4x(7x + 1)^2$$

51.
$$y = 8t + \frac{t-1}{t+4} - \left(\frac{8t-7}{4}\right)^2$$

52.
$$y = \frac{(2x^3+6)(7x-5)}{(2x+4)^2}$$

In Problems 53 and 54, use the quotient rule and power rule to find v'. Do not simplify your answer.

53.
$$y = \frac{(2x+1)(3x-5)^2}{(x^2-7)^4}$$

53.
$$y = \frac{(2x+1)(3x-5)^2}{(x^2-7)^4}$$
 54. $y = \frac{\sqrt{x+2}(4x^2-1)^2}{9x-3}$

- **4.** If $y = \sqrt{z}$ and $z = x^5 x^4 + 3$, find dy/dx.
- *5. If $w = u^2$ and $u = \frac{t+1}{t-1}$, find dw/dt when t = 3.
- **6.** If $z = u^2 + \sqrt{u} + 9$ and $u = 2s^2 1$, find dz/ds when
- 55. If $y = (5u + 6)^3$ and $u = (x^2 + 1)^4$, find dy/dx when
- **56.** If $z = 2y^2 4y + 5$, y = 6x 5, and x = 2t, find dz/dt
- 57. Find the slope of the curve $y = (x^2 7x 8)^3$ at the point (8, 0).
- **58.** Find the slope of the curve $y = \sqrt{x+1}$ at the point

In Problems 59-62, find an equation of the tangent line to t curve at the given point.

59.
$$y = \sqrt[3]{(x^2 - 8)^2}$$
; (3, 1) **60.** $y = (3x + 1)^2$; (-1, 4)

60.
$$y = (3x+1)^2$$
; $(-1, 4)$

61.
$$y = \frac{\sqrt{7x+2}}{x+1}$$
; $(1,\frac{3}{2})$

61.
$$y = \frac{\sqrt{7x+2}}{x+1}$$
; $\left(1, \frac{3}{2}\right)$ **62.** $y = \frac{-3}{(3x^2+1)^3}$; $(0, -3)$

In Problems 63 and 64, determine the percentage rate of change of y with respect to x for the given value of x.

63.
$$y = (x^2 + 9)^3$$
: $x =$

63.
$$y = (x^2 + 9)^3$$
: $x = 4$ **64.** $y = \frac{1}{(x^2 - 1)^3}$: $x = 2$

In Problems 65-68, q is the total number of units produced per day by m employees of a manufacturer, and p is the pric per unit at which the q units are sold. In each case, find the marginal-revenue product for the given value of m.

65.
$$q = 2m$$
, $p = -0.5q + 20$; $m = 5$

66.
$$q = (200m - m^2)/20$$
, $p = -0.1q + 70$; $m = 40$

67.
$$q = 10m^2/\sqrt{m^2+9}$$
, $p = 525/(q+3)$; $m = 4$

68.
$$q = 100m/\sqrt{m^2 + 19}$$
, $p = 4500/(q + 10)$; $m = 9$

- **69.** Demand Equation Suppose $p = 100 \sqrt{q^2 + 20}$ is a demand equation for a manufacturer's product.
 - (a) Find the rate of change of p with respect to q.
 - (b) Find the relative rate of change of p with respect
 - (c) Find the marginal-revenue function.
- 70. Marginal-Revenue Product If p = k/q, where k is a constant, is the demand equation for a manufacturer's product and q = f(m) defines a function that gives the total number of units produced per day by m employees, show that the marginal-revenue product is always zero.
- 71. Cost Function The cost c of producing q units of a product is given by

$$c = 5500 + 12q + 0.2q^2$$

If the price per unit p is given by the equation

$$q = 900 - 1.5p$$

use the chain rule to find the rate of change of cost with respect to price per unit when p = 85.