
ECON 460 Winter 2012 Assignment 2: CV-EV handout KEY

- 1. Myrtle has \$200 per month to spend on Transit (X) and all other goods (Y). She currently buys a bus pass for \$50 and rides 75 times per month. If she didn't buy the pass, bus rides would cost \$2/ride. Myrtle is offered to join a Transit program that would allow her to pay a membership fee and then could ride the bus for \$1 per trip. The most Myrtle would pay for the membership is \$20. and then she would ride 15 times a month. If she were given the membership for free, she would ride the bus 18 times per month. Myrtle also reveals that she would be indifferent between a free membership (and \$1 per ride) versus simply having the traditional bus pass reduced to \$25 per month (flat rate), where she would again choose to ride the bus 75 times a month.
 - (a) Using all the information provided, draw all the relevant budget constraints and indifference curves. Be sure to label all equilibrium points and have a legend that explains each point (in one or two sentences).
 - (b) Calculate her CV
 - (c) Calculate her EV Graph for CV-EV

- 2. Skippy has the following utility function: $u = x^{1/3}y^{2/3}$ and faces the budget constraint: $M = p_x x + p_y y$.
 - (a) Find Skippy's demand functions, indirect utility and expenditure.

$$x = \frac{M}{3p_x}, y = \frac{2M}{3p_y}$$

indirect utility function is

$$U_i = \left(\frac{M}{3p_x}\right)^{1/3} \left(\frac{2M}{3p_y}\right)^{2/3} = \frac{2^{2/3}M}{4p_x^{1/3}p_y^{2/3}}$$

 U_i tells you the utility number for any given budget and prices. The Expenditure Function is

$$\begin{array}{lcl} E & = & \frac{3p_x^{1/3}p_y^{2/3}}{2^{2/3}} \cdot U_i & & i = old, new \\ E & = & 1.89p_x^{1/3}p_y^{2/3}U_i & & \end{array}$$

(b) Suppose M = 120, $P_y = 1$ and $P_x = 4$. What is Skippy's optimal x, y and utility number? If the price of x was lowered to 2 what would be her x, y and utility number

$$x_{old} = 10, y_{old} = 80, u_{old} = 40$$

 $x_{new} = 20, y_{new} = 80, u_{new} = 50.4$

(c) What is the most Skippy would pay to have P_x lowered to 2? **USE EXPENDITURE FUNC-TION** with new p_x and old utility

$$E = 1.89 p_x^{1/3} p_y^{2/3} U_i$$

$$E = 1.89 p_x^{1/3} U_i (p_y = 1)$$

$$U_{i=old} = 40, p_x = 2$$

$$CV = 120 - E$$

$$CV = 120 - 1.89(2)^{1/3} (40) = 24.74$$

(d) Suppose M = 120, $P_y = 1$ and $P_x = 4$. How much additional income would Skippy need to be as well off as if the price of x had fallen to 2? **USE EXPENDITURE FUNCTION** with old p_x and new utility

$$E = 1.89p_x^{1/3}p_y^{2/3}U_i$$

$$E = 1.89p_x^{1/3}U_i (p_y = 1)$$

$$U_{i=new} = 50.4, p_x = 4$$

$$EV = E - 120$$

$$EV = 1.89(4)^{1/3}(50.4) - 120 = 31.2$$

	Millions	Comparison		5yr	10yr
CS (Benefit)	\$8.16 Benefit	Ban minu	s Plant	\$8.23	-\$13.68
VC Plant	\$1.70	Cells C5 - J1	7 or J22		
FC Plant	\$13.00				
interest	5%	Option 1 Pesticide Ba	an _		
Ban costs/yr	\$7.00	(CS-	Ban)/r =	\$ 23.20	

Option 2 Treatment Plant

From CS page	\$8,160,000
or, in millions:	\$8.16

Question 2				
Ban > 5 yr plant by	\$8.23 million			
Question 3				
10 yr Plant > Ban	\$13.68 million			
Question 4				
Ban = 5 yr plant if r = 10.21 %				
Question 5				
Ban = 10 yr plant if r = 38.90 %				

Year	Benefit	Cost	Net Benefit	Disc NB	SUM NPV
0	\$0.00	\$13.00	-\$13.00	-\$13.00	-\$13.00
1	\$8.16	\$1.70	\$6.46	\$6.15	-\$6.85
2	\$8.16	\$1.70	\$6.46	\$5.86	-\$0.99
3	\$8.16	\$1.70	\$6.46	\$5.58	\$4.59
4	\$8.16	\$1.70	\$6.46	\$5.31	\$9.91
5_	\$8.16	\$1.70	\$6.46	\$5.06	\$14.97
6	\$8.16	\$1.70	\$6.46	\$4.82	\$19.79
7	\$8.16	\$1.70	\$6.46	\$4.59	\$24.38
8	\$8.16	\$1.70	\$6.46	\$4.37	\$28.75
9	\$8.16	\$1.70	\$6.46	\$4.16	\$32.92
10	\$8.16	\$1.70	\$6.46	\$3.97	\$36.88
11	\$8.16	\$1.70	\$6.46	\$3.78	\$40.66
12	\$8.16	\$1.70	\$6.46	\$3.60	\$44.26
13	\$8.16	\$1.70	\$6.46	\$3.43	\$47.68
14	\$8.16	\$1.70	\$6.46	\$3.26	\$50.95
15	\$8.16	\$1.70	\$6.46	\$3.11	\$54.05