Economics 460 MT answer Key Part 2 - Written

- 1. (5 marks) Sparky has the utility function $u=xy^2$ and a budget constraint $M=P_xx+P_yy$. Initially $M=36, P_x=2, P_y=1$.
 - (a) Find optimal x, y, and u

$$x = \frac{M}{3P_x} \qquad y = \frac{2M}{3P_y} \qquad u = \left(\frac{M}{3P_x}\right) \left(\frac{2M}{3P_y}\right)^2 = \frac{4M^3}{27P_x P_y^2}$$

$$M = \sqrt[3]{\frac{27P_x P_y^2 u}{4}}$$

$$\begin{array}{rcl}
x & = & 6, \\
y & = & 24,
\end{array}$$

$$u = 3456$$

(b) Suppose $P_x = 1$, what is the new U?

$$x = 12,$$

$$y = 24,$$

$$u = 6912$$

(c) Find CV

$$CV = 36 - 28.57 = 7.4$$

(d) Find EV

$$EV = 45.35 - 36 = 9.35$$

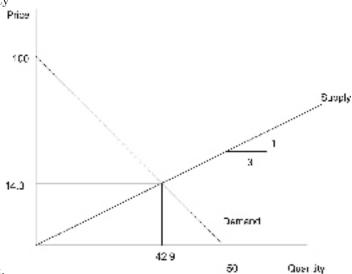
2. (2 marks) Suppose an industry has 12 firms, each with the following marginal (private) cost function

$$MC_i = 4Q_i$$
 $(i = 1, ..., 12)$

and the market demand function is $Q^T = 50 - 0.5P$

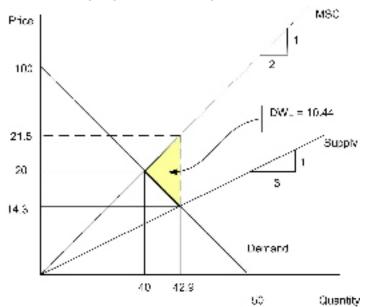
(a) Find the equation for the industry supply curve. ANSWER:

$$P = MC = 4Q_i$$


$$Q_i = \frac{1}{4}P$$

$$Q_i = \frac{1}{4}P$$

$$Q^S = 12Q_i = 3P$$


$$P = \frac{or}{3}Q^{S}$$

(b) Graph both supply and demand and find the equilibrium price and quantity

Graph:.

- 3. (3 marks) Using the information in problem 1, but now suppose that each firm's production causes external damage (pollution). The marginal external cost per firm is $MEC_i = 2Q$
 - (a) What is the marginal social cost per firm (MEC+MC)?, what would be the supply curve?
 - (b) Solve for the equilibrium price and quantities. Graph your results.
 - (c) Using your results from problem 1, calculate the net welfare cost when firms DO NOT take the MEC into account

4. (5 marks) Suppose we have three people who have different willingness to pay schedules, which are

$$A \quad MWTP = 100 - Q$$

$$B \quad MWTP = 110 - 1.1Q$$

$$C \quad MWTP = 120 - 1.2Q$$

Further, the marginal cost of the good is MC = 10 + .5Q

(a) If this good is a private good, aggregate the MWTP in the appropriate manner and solve for the socially optimal quantity and price. How much of the good does each person consume? ANSWER: first replace all the MWTP's with P and re-write to iso-

ANSWER: first replace all the MWTP's with P and re-write to isolate the Q's and then sum:

$$Q^{T} = Q_{A} + Q_{B} + Q_{C} = 300 - 2.74P$$

$$or$$

$$P = 109.5 - 0.365Q$$

Then solve for equilibrium:

$$\begin{array}{rcl} 109.5 - 0.365Q & = & 10 + .5Q \\ & & & \\ 99.5 & = & 0.865Q \\ & & Q & = & 115 \\ & P & = & 67.5 \\ & Q_A & = & 32.5, Q_B = 38.6, Q_C = 43.96 \end{array}$$

(b) If this good is a "public" good, aggregate the MWTP schedules and calculate the socially optimal quantity. What is each person's MWTP for this quantity?

$$\begin{array}{rcl} MWTP & = & 330 - 3.3Q \\ MWTP & = & MC \\ 330 - 3.3Q & = & 10 + .5Q \\ 320 & = & 3.8Q \\ Q & = & 84.2 \\ P_A & = & 15.8, P_B = 17.38, P_C = 18.96 \end{array}$$

(c) Fair Price is the average $\bar{P}=17.38,$ but C won't pay that price, no equilibrium unless regulated

5. (5 marks) A small town gets tap water from a stream. Demand for bottled water depends on quality of tap water. If tap water is clean, demand for bottled water is

$$P = 12 - 0.1Q$$

If the tap water is dirty, the demand for tap water is

$$P = 22 - 0.1Q$$

Bottled water is sold at cost and the price is \$2. The water gets polluted by emissions from a factory. It can be cleaned up for a one-time cost of \$20,000.

(a) Calculate the annual willingness to pay for clean water.

CS when water is clean is CS = 500,

CS when water is dirty is CS = 2000

Willingness to pay is the change in CS due to the dirty water, or

$$WTP = 2000 - 500 = 1500$$

(b) If interest rate is 10%

$$NPV = \frac{WTP}{i} - 20000$$
$$= \frac{1500}{0.1} - 20000 = -5000$$

NO

(c) If interest rate is 5%

$$NPV = \frac{WTP}{i} - 20000$$
$$= \frac{1500}{0.05} - 20000 = 10000$$

YES