

Figure 1: Graph for Question 3

ECON 460 Winter 2015 Assignment 2: CV-EV NPV KEY

- 1. Myrtle has \$200 per month to spend on Transit (X) and all other goods (Y). She currently buys a bus pass for \$50 and rides 40 times per month. If she didn't buy the pass, bus rides would cost \$2/ride. Myrtle is offered to join a Transit program that would allow her to pay a membership fee and then could ride the bus for \$1 per trip. The most Myrtle would pay for the membership is \$20. and then she would ride 15 times a month. If she were given the membership for free, she would ride the bus 18 times per month. Myrtle also reveals that she would be indifferent between a free membership (and \$1 per ride) versus simply having the traditional bus pass reduced to \$25 per month (flat rate), where she would again choose to ride the bus 40 times a month.
 - (a) Using all the information provided, draw all the relevant budget constraints and indifference curves. Be sure to label all equilibrium points and have a legend that explains each point (in one or two sentences).
 - (b) Calculate her CV (compensating variation) Two answers acceptable \$20 fee; or \$30 difference between the Pass (\$50), and the most she would pay for \$1 rides (\$20)
 - (c) Calculate her EV (equivalent variation)-25\$
- 2. Skippy has the following utility function: $u = \sqrt{xy}$ and faces the budget constraint: $M = p_x x + p_y y$. Her associated marginal rate of substitution is $MRS = \frac{y}{x}$
 - (a) Use the $MRS = p_x/p_y$ and the budget constraint to find Skippy's demand functions.

$$x = \frac{M}{2p_x}, y = \frac{M}{2p_y}$$

indirect utility function is

$$v = \sqrt{\left(rac{M}{2p_x}
ight)\left(rac{M}{2p_y}
ight)} = rac{M}{2\sqrt{p_x p_y}}$$

v tells you the utility number for any given budget and prices. The expenditure function is

$$B = 2\sqrt{p_x p_y} u$$

(b) Suppose M = 48, $P_y = 1$ and $P_x = 4$. What is Skippy's optimal x, y and utility number? If the price of x was lowered to 2 what would be her x, y and utility number

$$x_{old} = 15, y_{old} = 60, u_{old} = 12$$

 $x_{new} = 30, y_{new} = 60, u_{new} = 16.97$

(c) What is the most Skippy would pay to have P_x lowered to 2? **USE EXPENDITURE** (old **U** new price)

$$\begin{array}{rcl} B & = & 2\sqrt{p_xp_y}u \\ p_x & = & 2, p_y = 1, u = 12 \\ B & = & 33.94 \\ CV & = & 48 - 33.94 \\ CV & = & 14.6 \end{array}$$

(d) Suppose M = 120, $P_y = 1$ and $P_x = 4$. How much additional income would Skippy need to be as well off as if the price of x had fallen to 2? **USE EXPENDITURE** (new **U**, old price)

$$B = 2\sqrt{p_x p_y} u$$

 $p_x = 4, p_y = 1, u = 16.97$
 $EV = 19.88$

	Millions	Comparison		5yr	10yr
CS (Benefit)	\$8.16 Benefit	Ban minu	s Plant	\$8.23	-\$13.68
VC Plant	\$1.70	Cells C5 - J1	7 or J22		
FC Plant	\$13.00				
interest	5%	Option 1 Pesticide Ba	an _		
Ban costs/yr	\$7.00	(CS-	Ban)/r =	\$ 23.20	

Option 2 Treatment Plant

From CS page	\$8,160,000
or, in millions:	\$8.16

Question 2				
Ban > 5 yr plant by	\$8.23 million			
Question 3				
10 yr Plant > Ban	\$13.68 million			
Question 4				
Ban = 5 yr plant if r = 10.21 %				
Question 5				
Ban = 10 yr plant if r = 38.90 %				

Year	Benefit	Cost	Net Benefit	Disc NB	SUM NPV
0	\$0.00	\$13.00	-\$13.00	-\$13.00	-\$13.00
1	\$8.16	\$1.70	\$6.46	\$6.15	-\$6.85
2	\$8.16	\$1.70	\$6.46	\$5.86	-\$0.99
3	\$8.16	\$1.70	\$6.46	\$5.58	\$4.59
4	\$8.16	\$1.70	\$6.46	\$5.31	\$9.91
5_	\$8.16	\$1.70	\$6.46	\$5.06	\$14.97
6	\$8.16	\$1.70	\$6.46	\$4.82	\$19.79
7	\$8.16	\$1.70	\$6.46	\$4.59	\$24.38
8	\$8.16	\$1.70	\$6.46	\$4.37	\$28.75
9	\$8.16	\$1.70	\$6.46	\$4.16	\$32.92
10	\$8.16	\$1.70	\$6.46	\$3.97	\$36.88
11	\$8.16	\$1.70	\$6.46	\$3.78	\$40.66
12	\$8.16	\$1.70	\$6.46	\$3.60	\$44.26
13	\$8.16	\$1.70	\$6.46	\$3.43	\$47.68
14	\$8.16	\$1.70	\$6.46	\$3.26	\$50.95
15	\$8.16	\$1.70	\$6.46	\$3.11	\$54.05

Part 3: Congestion and the optimal toll

There are 840 people who travel from A to B each day in order to get to work. There are two routes that are available. Route 1 is the faster route but has limited capacity. Route two is slower but has much greater capacity. If travel time is measured in minutes, and is also a function of the number of cars on the road, then the average travel time for each route is:

$$AUC_1 = 30 + 0.5Q_1$$
$$AUC_2 = 60 + 0.1Q_2$$

where AUC_i is the average user cost and Q_i is the number of cars on route i (where $Q_1 + Q_2 = 840$). Further, the value of time is calculated to be \$12 per hour.

1. (a) In the absense of any tolls, what is the equilibrium number of cars per day on each route? SOLVE

$$30 + 0.5Q_1 = 60 + 0.1Q_2$$
and
$$Q_1 + Q_2 = 840$$

$$getting$$

$$Q_1 = 190, Q_2 = 650$$

$$AUC_1 = AUC_2 = 125$$

(b) What is the total time cost, (or social cost) per day

$$TC = 840 \times 610$$

(c) What is the socially optimal number of cars on each route? SOLVE

$$\begin{array}{rcl} MUC_1 & = & 30 + Q_1 \\ MUC_2 & = & 60 + 0.2Q_2 \\ MUC_1 & = & MUC_2 \\ 30 + Q_1 & = & 60 + 0.2Q_2 \\ & & and \\ Q_1 + Q_2 & = & 840 \\ Q_1 & = & 165, Q_2 = 675 \end{array}$$

(d) What is the total time cost per day at the social optimum?

$$AUC_1 = 112.5$$

$$AUC_2 = 127.5$$

$$Diff = 15$$

How much would be saved when compared to your answer to (b)? ANSWER: Total time difference is 375 minutes

(e) What would be the toll needed to achieve the social optimum?

$$\begin{array}{rcl} & 12/hr \\ & or \\ & \\ \frac{12}{60} & = & 0.2/\min \\ 15 \times 0.2 & = & \$3 \end{array}$$