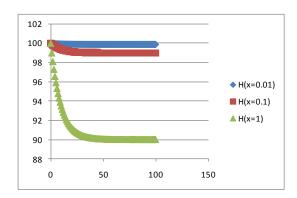

Homework #1 pg 45-46 #3, 4,5 & 6

[3]

Рор	1,000,000	WTP	Max WTP	Tax Bill (\$2)	Surplus	transfer	
low WTP	600,000	\$ 1	\$ 600,000	\$1,200,000	-\$ 600,000	\$ 600,000	\$ -
Hi WTP	400,000	\$ 100	\$40,000,000	\$ 800,000	\$39,200,000	-\$ 600,000	\$38,600,000
			\$40,600,000	\$2,000,000	\$38,600,000	\$ -	\$38,600,000
Cost:	\$2,000,000						
						1.5	
Рор	1,000,000	WTP	Max WTP	Tax Bill (\$2)	CS		
low WTP	600,000	\$ 1.00	\$ 600,000	\$ 600,000	\$ -		
Hi WTP	400,000	\$ 100.00	\$40,000,000	\$1,400,000	\$38,600,000		
			\$40,600,000	\$2,000,000	\$38,600,000		

[4]

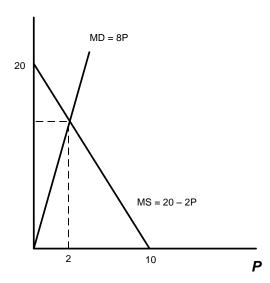


K. Wainwright Page 1 of 4

[5]

Kayaking	K							
Dodos	D							
Hiking	Н							
		Boris	Maggie	William				
	FIRST	Н	D	K				
	SECOND	K	Н	D				
	THIRD	D	K	Н				
					K	D	Н	
	KvD	K	D	K	2	1	-	K WINS
	DνΗ	Н	D	D	ı	2	1	D WINS
	ΚνΗ	Н	Н	K	1	-	2	H WINS

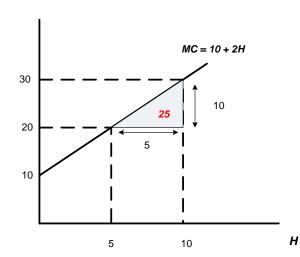
[6] Time Paths generated using excel



K. Wainwright Page 2 of 4

Homework #2

pg 96 #5,


- (a) $MD^T = 8P$
- (b)

- (c) $P = 10, P^* = 2$
- (d) $MWTP^{T} = 80 8A$
- MC(A) = 2A
- (e) $A^* = 8$

pg 114 #6,

- (a) H = 5
- (b) H = 10
- (c) Bribe: 25 < B < 50
- (d) Transaction Costs > 25

pg 133 #5

F be Fireyear and G be Goodstone

Total pollution emissions generated are $E_F + E_G = Q_F + Q_G$. The marginal damage of pollution is constant per unit of E at \$12

(a) G:
$$60(30) - 500 - (30)^2 = 400$$

(b) Apply tax to firm's MC: $MC_{NEW} = MC + t$ P = MC + t F:60=4Q_F+12, Q_F=12 G:60=2Q_G+12, Q_G=24

Profits (after tax) PxQ – TC -tQ
F:
$$60(12) - 300 - 2(12)^{2} - 12(12) = -12$$

G: $60(24) - 500 - (24)^{2} - 12(24) = 76$

(c) Profits(aftersubsidy,s) PxQ–TC +s(Q_a – Q_b)=PxQ–TC +s Q_a –s Q_b Where Q_a is output from part (a) and Q_b is output from part (b)

From the book and lecture, we know optimal subsidy equals optimal tax. For every unit of output the firm adds a unit of emissions to the environment. Therefore the subsidy is a "cost" in terms of opportunity cost, thus

P = MC + s is the profit max rule. Since s = t = 12, output under subsidy is the same as (b) F:
$$60(12) - 300 - 2(12)^{\frac{2}{3}} - 12(12) + [15x12] = -12 + 180 = 168$$
 G: $60(24) - 500 - (24)^{\frac{2}{3}} - 12(24) + [30x12] = 76 + 360 = 436$

(d) Under the tax policy, Fireyear will exit the market in the long run. Under the subsidy, both firms will remain. There may be entry into the market due to the subsidy unless there are barriers to entry.

pg 133 #6

$$P = 10$$
 $C = Q^2$ $E = 2Q$
 $MD = 2$ per E $TD = 2E = 4Q$

(a)
$$\pi = TR - TC = 10Q - Q^2 - 4Q$$
 $\pi' = 10 - 2Q - 4 = 0$ $Q = 3$ $\pi = 9$

(b)
$$Q = E \pi = TR - TC = 10Q - Q^2 - 2Q$$
 $\pi' = 10 - 2Q - 2 = 0$ $Q = 4 \pi = 16 \Delta \pi = 7$

(c) $Q = 5 \pi = 25$

K. Wainwright Page 4 of 4