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ABSTRACT
Vision transformers (ViTs) have demonstrated their superior accu-
racy for computer vision tasks compared to convolutional neural
networks (CNNs). However, ViT models are often computation-
intensive for efficient deployment on resource-limited edge devices.
This work proposes Quasar-ViT, a hardware-oriented quantization-
aware architecture search framework for ViTs, to design efficient
ViT models for hardware implementation while preserving the ac-
curacy. First, Quasar-ViT trains a supernet using our row-wise flex-
ible mixed-precision quantization scheme, mixed-precision weight
entanglement, and supernet layer scaling techniques. Then, it ap-
plies an efficient hardware-oriented search algorithm, integrated
with hardware latency and resource modeling, to determine a se-
ries of optimal subnets from supernet under different inference
latency targets. Finally, we propose a series of model-adaptive de-
signs on the FPGA platform to support the architecture search and
mitigate the gap between the theoretical computation reduction
and the practical inference speedup. Our searched models achieve
101.5, 159.6, and 251.6 frames-per-second (FPS) inference speed
on the AMD/Xilinx ZCU102 FPGA with 80.4%, 78.6%, and 74.9%
top-1 accuracy, respectively, for the ImageNet dataset, consistently
outperforming prior works.
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1 INTRODUCTION
ViTs [10, 35, 42, 62] incorporate the attention mechanism [46] to
fulfill various computer vision tasks, by allowing all the pixels in
an image to interact through transformer encoder blocks and thus
achieving higher accuracy compared to CNNs. Table 1 compares
representative CNN and ViT models, i.e., ResNet [12]/ResNeXt [56]
and DeiT [42] for the ImageNet dataset. DeiT-small (DeiT-S) with
a comparable number of parameters and GMACs as ResNet-50
achieves even higher accuracy than ResNeXt-101, whose size is
around 4× as that of DeiT-S. DeiT-base (DeiT-B) with comparable
size as ResNeXt-101 achieves 2.54% higher top-1 accuracy.

Table 1: Comparison of ResNets, ResNeXt, and DeiTs on Ima-
geNet dataset. We choose DeiT without distilling token here,
which represents state-of-the-art ViTs, as it can be directly
trained on ImageNet-10k without pre-training on a massive
dataset.

Model #Params (M) MACs (G) Top-1 Acc. Top-5 Acc.
ResNet-18 11.69 1.82 69.76% 89.08%
ResNet-50 26.56 4.14 76.13% 92.86%
ResNet-152 60.19 11.61 78.31% 94.05%
ResNeXt-101 88.79 16.59 79.31% 94.53%

DeiT-S 22.10 4.60 79.85% 94.97%
DeiT-B 87.50 17.60 81.85% 95.59%

Despite ViTs’ significant accuracy improvement, it is non-trivial
to deploy ViT inference on resource-limited edge devices due to
their huge model size and complex architectures. For example,
even the lightweight ViT model DeiT-S [42] has a model size of
22.10𝑀 parameters× 4𝐵𝑦𝑡𝑒𝑠 per floating-point parameter = 88.4𝑀𝐵,
presenting an overwhelming computing load and memory size for
most edge devices.

The basic transformer encoder with multi-headed self-attention
(MSA) and multi-layer perceptron (MLP) blocks is shown in Fig-
ure 1, consisting of multiple different computation components,
including linear layer, attention, residual addition, matrix reshape
operation, GELU, and layer norm. To further understand the bottle-
neck of the current ViT model structure, we profile the runtime of
each component of ViT on a Xeon(R) Silver 4214 CPU [16] using
Pytorch Profiler [33] as shown in Figure 1. We use the same color to
indicate the same component in both the transformer block struc-
ture and profiling figures. It shows matrix multiplication operations
dominate the processing time (94.7% and 87.3% for DeiT-B [42] and
DeiT-S [31], respectively) of execution cycles.
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Figure 1: Transformer encoder block structure andViTmodel
execution performance profiling on CPU for a) DeiT-Base
and b) DeiT-S with 12 encoders on ImageNet dataset.

Contemporary acceleration methods mainly focus on reduc-
ing the practical inference latency of matrix multiplication opera-
tions. They primarily fall into two categories: 1) neural architecture
search (NAS) that searches the lighter-weight model; and 2) model
compression, especially model quantization that reduces the per-
parameter bit-width. However, there are twomajor challengeswhen
applying these methods on hardware. The first challenge is associ-
ated with model quantization. It has been revealed that the most
suitable quantization schemes/bit-widths depend on model sizes
and architectures [49, 54], and there is a vast design space in the
quantization of both weights and activations for each layer on dif-
ferent models and hardware. As ViT models become deeper, the de-
sign space increases exponentially, resulting in poor performance of
rule-based strategies. Although recent studies explored automated
quantization techniques for a given ViT architecture [45, 49, 54],
they did not integrate model quantization with NAS together, which
could result in suboptimal performance. In this paper, we propose
the framework of model quantization and NAS co-design for ViTs
towards improved performance compared to treating NAS and
quantization separately.

The second challenge is the gap between the theoretical com-
putation throughput and the practical inference speed on actual
hardware. For example, layer-wise (inter-layer) mixed-precision
quantization (for CNNs) [49, 54] quantizes each layer with a dif-
ferent bit-width and therefore executes layers through distinct
hardware components sequentially, leading to low resource utiliza-
tion. Furthermore, kernel-wise mixed-precision quantization (for
CNNs) [29] assigns different bit-widths down to the kernel level,
significantly diversifying the computing pattern and is inefficient
for hardware implementation.

Recent work FILM-QNN [40] and Auto-ViT-Acc [22] leverage
the intra-layer mixed quantization to achieve good performance
for both model accuracy and throughput on FPGA. By applying
two different quantization bit-widths/schemes for different chan-
nels and limiting the same mixed-precision ratio across each layer,
FPGA can efficiently handle different computations on different
hardware resources sharing the same hardware design. However,
existing approaches suffer from a manually configured uniform
mixed-precision ratio across all layers, potentially compromising
quantized model accuracy. Moreover, architectural design consider-
ations are often neglected, limiting the overall model performance.

To address these problems comprehensively, we propose Quasar-
ViT, an integration of a hardware-oriented quantization-aware ar-
chitecture search targeting ViT. First, to fully unleash the com-
putation potential of FPGA resources, we investigate a hardware-
friendly row-wise mixed-precision quantization scheme. At the al-
gorithm level, different from FILM-QNN [40] andAuto-ViT-Acc [22],
we quantize different channels within each layer into lower and
higher bit-widths with the flexibility of different mix-ratios for lay-
ers, which achieves a more fine-grained architecture to maintain
the accuracy. At the hardware level, we propose the FPGA-based
model-adaptive design, including 4-bit atomic computation and
hybrid signed/unsigned DSP packing, which set basic hardware
units for the lower-bit computation, and decompose the higher-bit
computation to lower-bit ones to reuse the resources. Second, dur-
ing the supernet training, we propose the mixed-precision weight
entanglement mechanism, such that different transformer blocks in
subnets can share weights for their common parts in each layer to
enable efficient quantization during architecture search and reduce
training memory cost. On top of that, we establish the correspond-
ing FPGA latency and resource modeling to estimate the inference
latency and combine it with an efficient hardware-oriented evo-
lution search method. Based on the above, we integrate with the
one-shot NAS algorithm to efficiently find the most accurate quan-
tized model under the given inference latency. We also explore the
layer scaling in CaiT [43] and extend it to the supernet architecture
to improve the training efficiency and model accuracy. To demon-
strate the compatibility of our proposed framework with knowledge
distillation (KD) and further improve our searched model accuracy,
we integrate KD [15] into the training process. Finally, on the hard-
ware side, we implement the basic computing units for 4-bit weight
and 6-bit activations with hybrid signed/unsigned DSP packing
optimization to enable efficient FPGA implementation.

The contributions of our work are summarised as follows:

• An end-to-end hardware-oriented quantization-aware archi-
tecture search framework (Quasar-ViT) for ViTs, achieving
superior accuracy and inference speed over prior studies. La-
tency/resource modeling of the hardware accelerator design
is integrated into the search process.

• Hardware-friendly quantization techniques—such as flexible
row-wise mixed-precision quantization and mixed-precision
weight entanglement—in the architecture search, towards
high accuracy, low training cost, and efficient implementa-
tion.
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• Real FPGA implementations of our model-adaptive design,
with our proposed 4-bit weight atomic computation and
hybrid signed/unsigned DSP packing.

• Integration of proposed supernet layer scaling (SLS) in our
framework, achieving further accuracy improvement. Our
ablation study also demonstrates our framework’s good com-
patibility with knowledge distillation (KD).

Quasar-ViT achieves 101.5, 159.6 and 251.6 FPS on theAMD/Xilinx
ZCU102 FPGA board with 80.4%, 78.6%, and 74.9% top-1 accuracy
for ImageNet, respectively.

Compared to the representative ViT training-aware quantiza-
tion [20] and the post-training quantization [27], at a similar model
size, our model achieves 2.1% and 5.2% higher top-1 accuracy, re-
spectively. Compared with Auto-ViT-Acc [22], a state-of-the-art
FPGA accelerator for ViT with mixed-scheme quantization (with-
out NAS), we achieve 1.7% better top-1 accuracy with a similar FPS,
and 1.6× better FPS with a similar level of model accuracy.

2 RELATEDWORK
2.1 Vision Transformers
First proposed in [10], the vision transformer (ViT) is a ground-
breaking work that uses transformer blocks for vision tasks. Unlike
traditional CNN architectures that use a fixed-size window with re-
stricted spatial interactions, ViT interprets an image as a sequence of
patches and adopts the self-attention mechanism [46]. This allows
all the positions in an image to interact through transformer blocks,
which provides the extraordinary capability to capture relations at
the pixel level in both spatial and temporal domains. However, the
original ViT requires pre-training with large-scale datasets such as
ImageNet-21k and JFT-300M. To tackle the problem, many variants
such as DeiT [42] and T2T-ViT [62] were proposed, which can be
well trained with only ImageNet-10k. ViTs improve model accu-
racy at the cost of increased volume of computation and structural
complexity. In ViTs, the main model architecture is transformer
encoder blocks with multi-headed self-attention (MSA) and multi-
layer perceptron (MLP) blocks. These blocks involve large matrix
multiplications, which incur the most computational cost. These
complex architectures and enormous computation/storage demand
make it hard to deploy ViTs on resource-limited edge devices.

Therefore, we quantize all layers involved in matrix multiplica-
tion, but not the non-linear functions, e.g., layer normalization, due
to their low computational cost and potential effects on accuracy.

2.2 Non-Transformer DNN Model Quantization
2.2.1 Quantization Scheme. To compress model size and improve
inference speed, model quantization has been widely explored
for deep neural networks (DNNs). Existing quantization research
can be categorized according to quantization schemes, such as bi-
nary [8, 36], ternary [13], and low-bit-width fixed-point [7, 7, 68, 68]
quantize models with the same interval between each quantization
level. Although binary and ternary quantization reduce operations
and simplify hardware implementation to the extreme, they intro-
duce large accuracy loss due to insufficient bit-width. For example,
based on reports from the above works, accuracy typically degrades
by > 5% under binary quantization and 2− 3% for ternary quantiza-
tion. To overcome the large accuracy loss coming from insufficient

bit-width, the fixed-point quantization is proposed, applying mod-
erate and adjustable quantization bit-width, to maintain accuracy.
This quantization scheme was implemented with different methods
and algorithms, such as DoReFa-Net [68] and PACT [7].

Finally, there are also non-linear quantization schemes, such as
power-of-two (PoT) [17] and additive PoT [19]. They replace the
multiplication with shifting operations where the distribution of
quantization levels becomes unbalanced, having higher precision
around the mean and less precision at the two sides.

2.2.2 Mixed-Precision/SchemeQuantization. To exploremore quan-
tization potential while preserving the model accuracy, Besides
the single scheme quantization, some works [9, 39, 45, 49, 54] ex-
plore inter-layer mixed-precision quantization by assigning dif-
ferent precisions to layers. For example, HAQ [49] determines
the bit-width of each layer by an agent trained with reinforce-
ment learning. DNAS [54] used NAS to search layer-wise bit-width.
Furthermore, [29] explored intra-layer mixed quantization to en-
able different precisions or schemes within each layer. Based on
them, hardware designs [5, 40] leveraged the intra-layer mixed-
precision/mixed-scheme to enable uniformity within each layer,
guaranteeing inference acceleration. However, they need to set the
same mixed ratio for layers, which limits the model’s accuracy.

2.3 Transformer and ViT Quantization
Quantization has also been studied for transformers, especially for
natural language processing (NLP) tasks [1, 64, 65]. Q8BERT [64]
finetuned BERT through 8-bit quantization-aware training. Ternary-
BERT [65] implemented an approximation-based and loss-aware
ternary quantization on BERT. BinaryBERT [1] proposed a ternary
weight splitting strategy to derive binary BERT with performance
as the ternary one. Inspired by those, [27] and [22] studied quan-
tization on ViT in computer vision tasks. PTQ [27] evaluated the
post-training quantization on ViT and achieved comparable accu-
racy to the full-precision version. Auto-ViT-acc [22] proposed an
FPGA-aware framework with mixed-scheme quantization for ViT,
which we will compare in the evaluation. FQ-ViT [24] proposed
power-of-two factor and log-int-softmax to proceed with the ViT
quantization. Q-ViT [20] used the switchable scale to achieve head-
wise ViT mixed quantization. However, these works are all based on
full-precision pre-trained models and do not include the dimension
of network architecture search.

2.4 Neural Architecture Search
2.4.1 NAS Strategies. There has been a trend to design efficient
DNNs with NAS. In general, NAS can be classified into the follow-
ing categories according to its search strategy. First, reinforcement
learning (RL) methods [2, 4, 25, 32, 67, 69, 70] use recurrent neural
networks as predictors validating the accuracy of child networks
over a proxy dataset. Second, evolution methods [30, 37] develop
a pipeline of parent initialization, population updating, genera-
tion, and elimination of offspring to find desired networks. Third,
one-shot NAS [3, 11, 60] trains a large one-shot model containing
all operations and shares the weight parameters with all candi-
date models. Based on the above work, weight-sharing NAS has
become popular due to training efficiency [38, 47, 61]. One over-
parameterized supernet is trained with weights shared across all
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Figure 2: Comparison of mixed-precision quantization under
different granularity. We use the example of two different
bit-widths, represented as blue and pink colors. We propose
the row-wise flexible mixed-precision quantization in (d).

sub-networks in the search space. This significantly reduces the
computational cost during the search. Although most of the above
work focuses on the traditional CNN architectures, such as [61]
and [38], some works have started investigating the search for ef-
ficient ViT networks [6, 18, 48, 55]. Among them, Autoformer [6]
entangles the model weights of different ViT blocks in the same
layer during supernet training with an efficient weight-sharing
strategy to reduce training model storage consumption as well as
training time.

2.4.2 Hardware-Oriented NAS. Some recent works realize the gap
between theoretical computation improvement and practical infer-
ence speedup. They investigate the algorithm/hardware co-design
and incorporate the inference latency into NAS [23, 41, 53], which is
more accurate than intuitive volume estimation by MAC operations.
For example, MnasNet [41] and NPAS [23] utilize the latency on
mobile devices as the reward to perform RL search, where gradient-
based NAS work FBNet [53] adds a latency term to the loss function.
However, these works neither target ViTs nor exploit quantization
in the hardware-aware ViT search.

3 HARDWARE-ORIENTED
QUANTIZATION-AWARE NAS FOR VITS

3.1 Row-Wise Flexible Mixed-Precision
Quantization with Hardware/Software
Co-design

Figure 2 classifies quantization with different levels of granular-
ity. Model-wise quantization [7, 68] uses a unified quantization

bit-width for the whole model and thus misses some quantization
opportunities. On the other hand, mixed-precision quantization, as
discussed in related work, explores more quantization potential (i.e.,
quantizing each component to a bit-width as low as possible) while
preserving the accuracy of the model. Specifically, layer-wise (inter-
layer) mixed-precision quantization [49, 54] sets each layer with a
specific quantization bit-width. Besides that, Q-ViT [20] proposed
a head-wise mixed-precision quantization scheme, which assigns
different bit-widths to different attention heads. Both the layer-wise
and head-wise quantization schemes suffer from limited quantiza-
tion flexibility without considering the variance inside each layer.
Moreover, fixed row-wise (intra-layer) mixed-precision quantiza-
tion is proposed in prior work [40], which uses different quantiza-
tion bit-widths for different channels in each CNN layer and limits
the same mixed-precision ratio across different CNN layers, and
thus multiple layers can share the same hardware design, making
it more hardware-friendly. Finally, kernel-wise mixed-precision
quantization [29] assigns different quantization bit-widths down to
the kernel level, which greatly diversifies the computing pattern
and makes it inefficient to implement on hardware.

Based on the above discussion, we use the row-wise flexible
mixed-precision quantization scheme for ViTs, as shown in Fig-
ure 2(d), which preserves the quantization flexibility among layers
for better accuracy while maintaining the hardware uniformity for
more efficient implementation. Different from [40] that limits the
same mixed-precision ratio across CNN layers, for ViTs, we have to
provide the flexibility to obtain different mixed ratios in different
layers to maintain the model accuracy. To maintain hardware uni-
formity and avoid hardware under-utilization, we propose to design
the basic hardware units for the lower-bit computation, decompose
the higher-bit computation into lower-bit ones, and reuse the basic
hardware units (described in Section 4.2 and Section 4.3). As a re-
sult, we have preserved the uniformity of the hardware design and
enabled the flexible bit-width mixed-ratio among ViT layers. We
explain the hardware details in Section 4.

3.2 Intra-layer Mixed-Precision Weight
Entanglement

In classical one-shot NAS, the weights of each sample candidate
are shared with the supernet during training. However, as shown
in Figure 3 (a), when using the classical weight-sharing strategy,
the building blocks from multiple subnets, even in the same layer,
are isolated. Therefore, it leads to higher memory costs and slower
training convergence.

To address this problem, weight entanglement is proposed in [6]
to reduce the supernet model size: as shown in Figure 3 (b), different
transformer blocks can share their common weights in each layer. It
also allows each block to be updated more times than the previous
independent training strategy, thus achieving faster convergence.
However, this structure is hard to combine with mixed quantization
since one shared weight cannot be trained into two different bit-
widths at the same time (i.e., bit-width conflict).

In this paper, we propose the mixed-precision weight entangle-
ment, as shown in Figure 3 (c), to incorporate the quantization
search while preventing the potential bit-width conflicts problem
in the shared weight. Mixed-precision weight entanglement block
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contains two parts of weights with different precisions. Different
quantization mixed ratios can be achieved by extracting different
percentages of weights over these two parts. In the implementation,
for each layer, we only need to store the weights of the largest
of the 𝑛 homogeneous candidate blocks with both the 4-bit and
8-bit weights. The remaining smaller building blocks can extract
the weights directly from the largest building block. The different
quantization mixed ratios can be reached by moving the position
of the selected block.

3.3 Supernet Layer Scaling (SLS) Structure
The layer scaling structure proposed by CaiT [43] improves the
stability of the optimizations when training transformers for image
classification, thus improving the model accuracy. We explore this
structure and extend it to supernet layer scaling (SLS).

Layer scaling is a per-channel multiplication of the vector pro-
duced by each residual block. For ViT, this layer is deployed after
the multi-head self-attention (MSA) and multi-layer perceptron
(MLP) modules in each encoder block. The objective is to group the
updates of the weights associated with the same output channel.
Layer scaling can be denoted as a multiplication by a diagonal ma-
trix diag

(
𝜆𝑙,1, . . . , 𝜆𝑙,𝑑

)
on the output of 𝑙-th residual block, where

𝑑 is the corresponding number of output channels in the model. All
𝜆s are learnable weights.

To fit our mixed-precision weight entanglement strategy, dif-
ferent from the original CaiT [43] implementation that uses the
whole layer scaling in every training iteration, our SLS extracts the
corresponding elements synchronized with the output dimension
of the selected subnet while keeping the other weights frozen. As
shown in Figure 4, using the residual block of MLP as an example,
assuming that the current MLP’s output dimension starts from
𝑚-th channel and ends at 𝑛-th channel, the supernet layer scaling
computation can be formulated as:

𝑦𝑙 = 𝑥𝑙 + diag
(
𝜆𝑙,𝑚, . . . , 𝜆𝑙,𝑛

)
×MLP (LN (𝑥𝑙 )) , (1)

where 𝑥𝑙 and𝑦𝑙 denote the input and output, respectively; LNmeans
the layer normalization.

3.4 End-to-End Quasar-ViT Framework
3.4.1 One-shot NAS Algorithm. Our one-shot NAS algorithm con-
sists of two steps:
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Figure 4: Supernet layer scaling (SLS) in Quasar-ViT encoder
block. We use the SLS after MLP as an example.

• We train a supernet to directly sample different quantized
architectures as child models for training. The supernet is
trained with SLS and KD techniques. The search space is
encoded in the supernet, and the parameters of all candidate
networks in the search space are optimized simultaneously
by our proposed weight-sharing during training.

• We select architectures from the pre-trained supernet using
the hardware-oriented evolution search method to find the
most accurate model under the given hardware resource
constraints. We search based on the hardware latency/FPS
and resource modeling illustrated in Section 4.4.

Here, we show a toy example of the supernet training process
including candidate sampling and the corresponding searched re-
sults for different targeting FPS in Figure 5. Figure 5 (a) illustrates
one iteration of the supernet training process, where the pink area
indicates the sampled high precision values and the blue area indi-
cates the sampled low precision values in the supernet. The light
blue area indicates the frozen values (currently not sampled) in this
iteration. After the supernet training and the hardware-oriented
evolution search, we could obtain different models targeting dif-
ferent frames per second (FPS) as shown in Figure 5 (b). For the
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Figure 5: SuperNet training process including candidate sampling and the searched results for different targeting FPS. We use a
model with layers of 6 channels as a toy example.

sake of brevity, we only show the quantized value here. The scaling
factor along with other related structures is omitted.

3.4.2 Search Space. We show our search space design in Table 2.
Our search components include the overall embedding dimension,
the number of transformer layers, the quantization mixed-ratio (i.e.,
the percentage of 8-bit weights mixed in the layer) for each linear
layer, and the hidden dimension and expansion ratio (for MLP) in
each ViT encoder block.

To accelerate the supernet training process and improve the
overall model performance, we partition the large-scale search
space into two sub-spaces and encode them into two independent
supernets for QUASAR-Small and QUASAR-Large, respectively. By
splitting and customizing search space for supernets of different
sizes, we mitigate the training interference caused by the huge
subnets’ difference. This training strategy has been proved in [66].
Such partition allows the search algorithm to concentrate on finding
models within a specific hardware inference latency, which can
be specialized by users according to their available resources and
application requirements. It also reduces gradient conflicts between
large and small sub-networks trained via weight-sharing due to
gaps in model sizes.

Table 2: An illustration of our search space: It is divided into
two independent supernets within the different parameter
ranges to satisfy different resource constraints.

QUASAR-Small QUASAR-Large
Embed Dimension (192, 216, 240) (320, 384, 448)
Hidden Dimension (192, 256) (320, 384, 448)
8-bit Mixed-ratio (0%, 25%, 50%) (0%, 25%, 50%)
Expansion Ratio (3.5, 4) (3, 3.5, 4)
Number of Layers (12,13,14) (12,13,14)

3.4.3 Supernet Training. In each iteration, we randomly select a
quantized ViT architecture from the search space. Then we obtain
its weights from the supernet and compute the losses of the subnet.

Algorithm 1 Supernet Training.

Input: Training epochs 𝑁 , search space P, supernet S, loss
function 𝐿, train dataset 𝐷𝑡𝑟𝑎𝑖𝑛 , initial supernet weights WP ,
candidate weightsW𝑝

for 𝑖 in 𝑁 epochs do
for data, labels in 𝐷𝑡𝑟𝑎𝑖𝑛 do
Randomly sample one quantized ViT architecture from
search space P
Obtain the corresponding weightsW𝑝 from supernetWP
Compute the gradients based on 𝐿

Update the corresponding part ofW𝑝 inWP while freezing
the rest of the supernet S

end for
end for
Output S

Finally, we update the corresponding weights with the remaining
weights frozen. The architecture search space 𝑃 is encoded in a
supernet denoted as S(𝑃,𝑊𝑃 ), where𝑊𝑃 is the weight of the super-
net that is shared across all the candidate architectures. Algorithm 1
illustrates the training procedure of our supernet.

3.5 Hardware-Oriented Evolution Search
In our hardware-oriented evolution search for crossover, two ran-
dom candidate architectures are first picked from the top candidates.
Then we uniformly choose one block from them in each layer to
generate a new architecture. For mutation, a candidate mutates its
depth with probability 𝑃𝑑 first. Then it mutates each block with a
probability of 𝑃𝑚 to produce a new architecture. Newly produced
architectures that do not satisfy the constraints will not be added
for the next generation. To evaluate the candidates, we perform
hardware latency and resource modeling based on the proposed
row-wise flexible mixed-precision quantization scheme. The details
of the modeling have been discussed in Section 4.4.
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3.6 Integration with Knowledge Distillation
(KD)

To demonstrate the compatibility of our proposed framework with
knowledge distillation (KD) and further improve the accuracy of
our supernet, we also integrate KD [15] in our training process. We
use the pre-trained RegNetY-32G [34] with 83.6% top-1 accuracy as
different teacher models. We also apply the soft distillation method.
Soft distillation [15] minimizes the Kullback-Leibler divergence
between the softmax of the teacher and the softmax of the student
model. The distillation loss is:

𝐿𝑠𝑜 𝑓 𝑡 = (1 − 𝛼)𝐿𝐶𝐸 (𝜓 (𝑍𝑠 ), 𝑦) + 𝛼𝜏2𝐿𝐾𝐿 (𝜓 (
𝑍𝑠

𝜏
),𝜓 (𝑍𝑡

𝜏
)), (2)

where 𝑍𝑡 and 𝑍𝑠 are the logits of the teacher and student models,
respectively. 𝜓 is the softmax function. 𝜏 is the temperature for
the distillation, 𝛼 is the coefficient balancing the Kullback–Leibler
divergence loss (𝐿𝐾𝐿), and the cross-entropy (𝐿𝐶𝐸 ) on the ground
truth labels 𝑦 in the distillation.

4 FPGA HARDWARE DESIGN FOR
QUASAR-VIT

4.1 Overall Hardware Design for Quasar-ViT
Figure 6 presents the overall hardware architecture of the Quasar-
ViT accelerator on the ARM-FPGA platform. Below is how each
module in ViT is mapped to the hardware in Figure 6. The most
time-consuming MSA and MLP modules are accelerated by our
GEMM engine on the FPGA, which is similar to the recent Auto-
ViT-Acc work [22]. The lightweight SLS modules right after MSA
and MLP layers are also accelerated on the FPGA to avoid time-
consuming execution on the ARM CPU. The less time-consuming
modules including layer normalization and activation functions
(i.e., Softmax or GELU) are executed on the ARM CPU, due to their
complex structure for FPGA implementation. The hardware engines
on the FPGA and software modules on the ARM CPU exchange
data via the shared off-chip memory.
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Figure 6: Quasar-ViT hardware architecture.

As previously mentioned, we mainly focus on the most time-
consuming GEMM engine design. Due to the limited on-chip mem-
ory capacity and computing resource on the FPGA, for each ViT
layer (i.e., MSA and MLP), our GEMM engine processes the input,
weight, and output data in tiles: a small tile of the input (tokens)
and weight of each ViT layer are first loaded from the off-chip

DDR memory to the on-chip buffers, then they are processed by
the GEMM engine all on-chip. To improve the performance, the
double buffering technique is applied again to overlap the off-chip
memory accesses and GEMM computation, shown in Figure 6.

Next, we present our design of the basic hardware units in the
GEMM engine and the corresponding DSP (digital signal processor)
packing optimization, as well as the hardware resource and latency
modeling for the tiled GEMM design.

4.2 Unification of Atomic Computation
One major challenge in the FPGA accelerator design is to efficiently
support flexible mixed ratios of different bit-width computations
across ViT layers. On one hand, putting multiple copies of hardware
accelerator designs for each mixed-ratio (i.e., each layer) simultane-
ously on the FPGA leads to severe hardware resource contention
and under-utilization, since layers are executed sequentially. On
the other hand, pre-synthesizing multiple copies of hardware accel-
erator designs for each layer and reconfiguring the FPGA for each
layer incurs significant FPGA reconfiguration overhead.

Inspired by the approach proposed in QGTC [52] to support
arbitrary bit-width computation for quantized graph neural net-
works on GPUs, in our FPGA hardware design, we unify the basic
processing elements to process 4-bit weight atomic computations
and construct the 8-bit weight data computations using two 4-bit
weight data operations as such: for multiplication between an N-bit
activation value (𝑎𝑐𝑡𝑁 ) and an 8-bit weight value (𝑤𝑔𝑡8), we derive
the corresponding product as:

𝑎𝑐𝑡𝑁 ·𝑤𝑔𝑡8 = 𝑎𝑐𝑡𝑁 ·𝑤𝑔𝑡ℎ4 << 4 + 𝑎𝑐𝑡𝑁 ·𝑤𝑔𝑡𝑙4, (3)

where𝑤𝑔𝑡ℎ4 and𝑤𝑔𝑡𝑙4 represent the higher and lower 4-bit data
of𝑤𝑔𝑡8, respectively. The multiplication result between 𝑎𝑐𝑡𝑁 and
𝑤𝑔𝑡ℎ4 are left shifted by 4 bits.

Based on this unification, we propose hybrid signed/unsigned
DSP packing to handle the 4-bit weight atomic computation.

4.3 Proposed Hybrid Signed/Unsigned DSP
Packing

To fully exploit the potential of DSP resources on FPGAs, we pack
multiple low-bit multiplications within each DSP block follow-
ing [57, 58]. Each DSP block (DSP48E2) on the AMD/Xilinx ZCU102
FPGA board could support the computation of 𝑃=(𝐴+𝐷)×𝐵, where
both 𝐴 and 𝐷 are 27-bit operands, 𝐵 is an 18-bit operand, and 𝑃 is
the 45-bit output. In our study, we explore the following two DSP
packing schemes and discuss their design trade-offs. The activation
bit-width 𝑁 is set to 6 to fully exploit the DSP for computation.

• Packing factor 3 (3 weights sharing 1 activation). In
Figure 7 (a), three 4 × 6-bit multiplications are packed into a
single DSP block, by holding one 6-bit signed activation in
port 𝐵 and three 4-bit weight values in port 𝐷 . To pack three
weights into a single 27-bit port 𝐷 , look-up tables (LUTs)
are utilized to first combine two weights and then integrate
them with the third weight data. With this DSP packing
scheme, for the W4A6 (i.e., 4-bit weight and 6-bit activation)
computation, we could pack three 4-bit weights that share
the same activation. And for the W8A6 computation, we
could use two DSPs to process the upper and lower 4-bit
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of three 8-bit weights in parallel. Note that after the 8-bit
weights are decomposed into two 4-bit weights, only the
upper 4-bit weights contain the sign bits and should be sign-
extended (required by DSP for output correctness [57, 58]),
the lower 4-bit weights should be treated as unsigned values.

• Packing factor 4 (2 weights sharing 2 activations). In
Figure 7 (b), four 4 × 6-bit multiplications are packed into
a single DSP block, by holding two 6-bit signed activation
values in port 𝐷 and two 4-bit weights in port 𝐵. It is worth
mentioning the port placement of the activation and weight
values are swapped from the packing factor 3 scheme, to
increase the packing strength.With this DSP packing scheme,
for the W4A6 computation, we could pack a pair of two 4-
bit weights that share the same pair of activation values.
And for the W8A6 computation, a similar technique as the
previous packing scheme is used to separately handle the
upper and lower 4-bit values of an 8-bit weight. Again for the
two decomposed 4-bit weights, only the upper 4-bit weights
contain the sign bit and should be sign-extended (required
by DSP for output correctness [57, 58]), but the lower 4-bit
weights should be treated as unsigned values.

4.4 Hardware Resource and Latency Modeling
Here, we present our hardware resource and latency modeling used
in the hardware-oriented evolution search.

Table 3: Notations for Quasar-ViT accelerator

Notation Description

𝑀 (𝑁 ) Number of output (input) channels
𝐹 Number of token sequences
𝑇𝑛 Tiling size for data in input channel dimension for

each head
𝑇𝑚 Tiling size for data in output channel dimension
𝑁ℎ Total number of heads
𝑃𝐹 Parallel factor along the number of tokens
𝐷𝑎𝑐𝑡 Number of data packed as one for activations
𝐷𝑤𝑔𝑡 Number of data packed as one for weights
𝐴in (𝐴out,
𝐴wgt)

Number of AXI ports used for data transfer of input
(output, weight) tile

𝐿in (𝐿wgt,
𝐿out, 𝐿cmpt)

Number of clock cycles for input transfer (weight
transfer, output transfer, computation) for a tile

𝑆dsp (𝑆lut ) Available number of DSPs (LUTs) on FPGA
𝐶dsp DSP cost for each MAC operation
𝐶lut LUT cost for each MAC operation
𝐶
𝑑𝑠𝑝

𝑙𝑢𝑡
Number of LUTs used by a multiplication executed
on DSPs

𝑁𝑑𝑠𝑝 Number of multiplication executed on DSPs
𝑁𝑙𝑢𝑡 Number of multiplication executed on LUTs
𝑁𝑡𝑜𝑡 The total number of multiplication on FPGA
𝛾𝑑𝑠𝑝 (𝛾𝑙𝑢𝑡 ) DSP (LUT) utilization threshold
𝑓 FPGA accelerator frequency
𝐹𝑃𝑆 Frames per second

4.4.1 Resource Modeling. To help guide the neural architecture
search, we provide details of the resource and latency models of

our FPGA accelerator design (mainly the GEMM engine). Table 3
lists the notations used in our models. We design our FPGA accel-
erator to fully leverage the available FPGA computing resources
(i.e., DSPs and LUTs), on-chip memory (i.e., BRAMs), and off-chip
memory bandwidth. To fully exploit the computing capability with
the available hardware resources, We maximize the total number of
parallel basic hardware compute units using both DSPs (i.e., 𝑁𝑑𝑠𝑝 )
and LUTs (i.e., 𝑁𝑙𝑢𝑡 ) for the datapath of our accelerator as

𝑁𝑡𝑜𝑡 = maximize
{
𝑁𝑑𝑠𝑝 + 𝑁𝑙𝑢𝑡

}
, (4)

while satisfying the following resource constraints

𝑁𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝 ≤ 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 , (5)

𝑁𝑙𝑢𝑡 ·𝐶𝑙𝑢𝑡 + 𝑁𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝
𝑙𝑢𝑡

≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 , (6)

where constraints 5 and 6 bound the DSP and LUT utilization to
be under the allowable thresholds, i.e., 𝛾𝑑𝑠𝑝 and 𝛾𝑙𝑢𝑡 with the total
resource amounts denoted by 𝑆𝑑𝑠𝑝 and 𝑆𝑙𝑢𝑡 . The hardware costs of

each multiplication implementation are denoted as 𝐶𝑙𝑢𝑡 and 𝐶
𝑑𝑠𝑝

𝑙𝑢𝑡
.

In order to choose the best implementation method for the basic
hardware units of our design, we characterize the FPGA resource
consumption using Xilinx Vivado 2020.1 [59] for the three cases in
Table 4, i.e., (a) multiplications executed on DSPs with packing fac-
tor of 3, (b) multiplications executed on DSPs with packing factor of
4, and (c) multiplications executed purely using LUTs. As observed
in Table 4, we derive the hardware costs of each multiplication
implementation, particularly, the LUT costs for pure-LUT-based
and DSP-based methods correspond to𝐶𝑙𝑢𝑡 and𝐶

𝑑𝑠𝑝

𝑙𝑢𝑡
. Note that the

DSP-based approach also consumes LUTs, due to data packing on
the input operands and output data construction operations, such
as bit shifting and data accumulation. Regarding the efficiency
lost by decomposing 8-bit to 4-bit, for the composed W8A6 com-
putation, on average, we can achieve one computation with 25.8
LUTs and 0.5 DSP or purely 66.7 LUTs. In contrast, direct W8A6
computation used in [40] (i.e., packing twoW8A6 operations within
one DSP method) requires 21.5 LUTs and 0.5 DSP or purely 62.2
LUTs. Since most of the weights are in 4-bit, using decomposing
does not affect the overall performance much by a slight increase
in the LUT utilization. In terms of the efficiency of DSP packing, a
single DSP can pack four W4A6 operations at most theoretically,
which is achieved by our approach.

For the LUT usage, shown in Table 4, we have:

𝐶
𝑑𝑠𝑝,𝑝𝑎𝑐𝑘3
𝑙𝑢𝑡

< 𝐶
𝑑𝑠𝑝,𝑝𝑎𝑐𝑘4
𝑙𝑢𝑡

< 𝐶𝑙𝑢𝑡 . (7)

In the final implementation, regardingwhichDSP packing scheme
to use and whether to use the pure-LUT-based method for the basic
hardware compute units, there are several situations according to
the available FPGA resources.

Situation-1: When 𝑆𝑙𝑢𝑡 is limited and insufficient to hold the
LUT consumption of full utilization of DSP packing with a factor
of 3, denoted as:

𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 ≤ 3 · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘3
𝑙𝑢𝑡

. (8)

In this case, to fully utilize the computation resources, we directly
allocate DSP-based computations with a packing factor of 3 as much
as possible until we reach the LUT resource limit.
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Figure 7: Illustration of DSP multiplication packing schemes for (a) 3 weights sharing 1 activation with packing factor of 3, and
(b) 2 weights sharing 2 activations with packing factor of 4.

Table 4: FPGA resource consumption for a single DSP-based
or LUT-based basic hardware compute unit. W4A6 denotes
4-bit weight and 6-bit activation; W8A6 denotes 8-bit weight
and 6-bit activation.

pure LUT-based DSP-based
packing
factor 3

packing
factor 4

W4A6 𝐶𝐿𝑈𝑇 33.3 10.9 12.9
𝐶𝐷𝑆𝑃 0 0.33 0.25

W8A6 𝐶𝐿𝑈𝑇 66.7 21.9 25.8
𝐶𝐷𝑆𝑃 0 0.67 0.5

W8A6
(direct)

𝐶𝐿𝑈𝑇 62.2 21.5
𝐶𝐷𝑆𝑃 0 0.5

Situation-2:When 𝑆𝑙𝑢𝑡 is enough to hold all the LUT consump-
tion from DSP packing with the factor of 4, satisfying:

4 · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘4
𝑙𝑢𝑡

≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 . (9)

Based on Eq. 4, 5, 6 and 9, we can conclude that using DSP
packing with the factor of 4 is more efficient if it meets the following
condition:

(4 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘4
𝑙𝑢𝑡

− 3 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘3
𝑙𝑢𝑡

) · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 ≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 ·𝐶𝑙𝑢𝑡 .
(10)

If it does not satisfy Eq. 10, we perform DSP-based computations
with a packing factor of 3. Besides that, for the remaining available
LUT resources, pure-LUT-based computation is also conducted in
both cases.

Situation-3:When 𝑆𝑙𝑢𝑡 is between the LUT demands by fully
deploying DSP computations with packing factors of 3 and 4, satis-
fying:

3 · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘3
𝑙𝑢𝑡

≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 ≤

4 · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 ·𝐶𝑑𝑠𝑝,𝑝𝑎𝑐𝑘4
𝑙𝑢𝑡

.
(11)

Based on Eq. 4, 5, 6, and 11, we can conclude that using DSP
packing with the factor of 4 is more efficient if it meets the following
condition:

𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 + 3 · 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 · (𝐶𝑙𝑢𝑡 −𝐶
𝑑𝑠𝑝,𝑝𝑎𝑐𝑘3
𝑙𝑢𝑡

)
𝐶𝑙𝑢𝑡

≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡
𝐶
𝑑𝑠𝑝,𝑝𝑎𝑐𝑘4
𝑙𝑢𝑡

,

(12)
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Figure 8: Data tiling in ViT computations.

In this case, we conduct only DSP-based computations with a
packing factor of 4. Otherwise, if it does not satisfy Eq. 12, we per-
form DSP-based computations with a packing factor of 3 and pure
LUT-based computation for the remaining available LUT resource.

4.4.2 Latency Modeling. As discussed in the Hardware Design Sec-
tion, our GEMM hardware engine accelerates the major MSA and
MLP modules and processes their input, weight, and output data in
tiles, as shown in Figure 8. our GEMM hardware engine accelerates
the major MSA and MLP modules and processes their input, weight,
and output data in tiles, as shown in Figure 8. Each MSA can be
seen as multiple parallel matrix multiplications. The accelerator is
designed to process parallel computations within each head. This
input channel splitting is also done for fully connected (FC) layers,
each containing one matrix multiplication for compatibility, and
the results need to be accumulated from all the input channels
in all the heads. Furthermore, the computing engine exploits fine-
grained data and operation parallelisms and can process 𝑇𝑚 · 𝑇𝑛
multiply-accumulate (MAC) operations in parallel.
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We model the inference latency of our hardware design based
on the number of clock cycles. For a layer 𝑖 in ViT, since data
packing can be used to transfer multiple (i.e., 𝐷𝑎𝑐𝑡 or 𝐷𝑤𝑔𝑡 ) values
at the same time in each AXI port, the clock cycles for loading one
input/weight tile and storing one output tile, are calculated as:

𝐿in =

⌈
𝑇𝑛

𝐷𝑎𝑐𝑡

⌉
·
⌈
𝐹

𝐴in

⌉
,

𝐿wgt =

⌈
𝑇𝑛

𝐷𝑤𝑔𝑡

⌉
·
⌈
𝑇𝑚

𝐴wgt

⌉
,

𝐿out =

⌈
𝑇𝑚

𝐷𝑎𝑐𝑡

⌉
·
⌈
𝐹

𝐴out

⌉
,

(13)

where 𝐿in, 𝐿wgt and 𝐿out indicate the number of the clock cycles
of input, weight, and output transfer for one corresponding tile,
respectively.

The clock cycle number to compute one tile is

𝐿cmpt = max
{ ⌈ 𝐹
𝑃𝐹

⌉
,
𝑇𝑛 · 𝑇𝑚 · 𝐹
𝑁𝑡𝑜𝑡

}
, (14)

where the first term is calculated by the latency model. The total
number of multiplications needed to compute one tile of matrix
multiplication is 𝑇𝑛 ·𝑇𝑚 · 𝐹 . Each tile has two levels of parallelism:
one is along the 𝑇𝑛 and 𝑇𝑚 dimension and the parallel factor is
𝑇𝑛 ·𝑇𝑚 (i.e., fully parallel); and the other is along the 𝐹 dimension
and the parallel factor is 𝑃𝐹 . Therefore, the first term is calculated as⌈
𝐹
𝑃𝐹

⌉
. The second term is limited by the resource constraint, where

we can support at most 𝑁𝑡𝑜𝑡 parallel multipliers (Eq. 4) due to the
resource constraint.

With the double buffers overlapping the data loading and com-
putation of the tiles, the overall clock cycle number for processing
one tile is 𝐿1 = max{𝐿in, 𝐿wgt, 𝐿cmpt}.

To obtain the accumulation of output results, this process is
performed multiple times (i.e., processing

⌈
𝑁
𝑇𝑛

⌉
input tiles). The

clock cycle number for calculating the whole output tile is 𝐿2 =

max
{
𝐿1 ·

⌈
𝑁
𝑇𝑛

⌉
+ 𝐿cmpt, 𝐿out

}
.

Since there are
⌈
𝑀
𝑇𝑚

⌉
number of output tiles, the total number of

clock cycles for a ViT layer 𝑖 is described by

𝐿𝑖tot =

⌈
𝑀

𝑇𝑚

⌉
· 𝐿2 + 𝐿out . (15)

Under a working frequency 𝑓 , the FPS is calculated as:

𝐹𝑃𝑆 =
𝑓∑

𝑖
𝐿𝑖tot

. (16)

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Our supernet training process takes 700 epochs with a batch size of
2048. The learning rate is set to 5 × 10−4 initially and decayed with
a cosine annealing schedule. The AdamW [28] optimizer is used
with the epsilon value of 1𝑒−8 and weight decay of 0.05. Additional
training optimizations, such as warmup and label smoothing are
performed during training. The number of warmup epochs and
label smoothing factor are set as 20 and 0.1, respectively. After
supernet training, we perform the hardware-oriented evolution
search, without subnet retraining.

Our training is conducted on 8 NVIDIA Ampere A100 GPUs
with CUDA 11.0 and PyTorch 1.7 frameworks on the Ubuntu oper-
ating system. To test the effectiveness of our framework, we also
implement Quasar-ViT framework on the Xilinx ZCU102 embedded
FPGA platform with quad-core ARM Cortex-A53 and XCZU9EG
FPGA chip. The FPGA working frequency is set to 150 MHz for all
the designs implemented via Xilinx Vitis and Vitis HLS 2020.1.

5.2 Accuracy Results
Here we analyze the accuracy results of our Quasar-ViT framework.
The weight precision is mixed with 4-bit and 8-bit, as mentioned
earlier, and the activation bit-width is determined by the hardware
feature. Without loss of generality, we use activation of 8-bit to
evaluate the accuracy in the ablation study of knowledge distillation
and supernet layer scaling.

5.2.1 Ablation Study of Knowledge Distillation and Supernet Layer
Scaling. To evaluate the compatibility of knowledge distillation
and our proposed SLS, we conduct an ablation study on both of
them. Without loss of generality and to prevent interference from
different model sizes and different quantization mixed ratios from
the searched subnet, we unify the search constraint with pureW8A8
(8-bit for both weight and activation) quantization implementation.

As shown in Table 6, we conduct four different settings of Quasar-
ViT with the unified model size and quantization scheme. The ac-
curacy of the four cases is 74.1% (w/o distillation and SLS), 75.6%
(only distillation), 74.9% (only SLS), and 76.1% (with both of them),
respectively. Knowledge distillation and SLS strategies are orthogo-
nal to each other, and both improve the model accuracy. Using them
together provides a better result. Given the observed effectiveness
of our proposed SLS strategy and the seamless compatibility of our
framework with knowledge distillation, we opt to incorporate both
strategies in our following experiments. Here we also quantize the
baseline DeiT-T [42] and compare it with our method without SLS
and distillation. Even without SLS and distillation, our quantization
NAS approach achieves a much better model accuracy than the
full-precision and the quantized (W8A8) DeiT-T models.

5.2.2 Ablation Study of Mixed-Ratio and Quantization Scheme. To
assess the efficacy of our row-wise flexible mixed-precision quanti-
zation scheme, we conducted an ablation study examining both the
quantization scheme itself and the 8-bit mixed ratio, as outlined in
Table 7. Since Quasar-ViT automatically searches the mixed ratios,
here we pick up the best model from the search stage for differ-
ent mixed ratios and compare them with the counterparts under
the fixed row-wise mixed quantization scheme. The results indi-
cate a consistent improvement in accuracy across different 8-bit
mixed-ratio levels with our flexible mixed scheme, underscoring
the efficiency of our proposed quantization scheme.

5.2.3 Overall Accuracy Results. Table 5 compares representative
ViT-based works with our proposed Quasar-ViT. Since many ViT-
based works do not incorporate model quantization, we also con-
sider the bit-width in the model size and the equivalent number of
total bit operations (BOPs).
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Table 5: Comparison of representative ViT-based works with our proposed Quasar-ViT.

Model Quantization #Params Model Size MACs MAC Bit-width Equivalent Top-1 Accuracy
Mixed Type (𝑀) (𝑀𝐵) (𝐺) Weight Activation BOPs (𝐺) (%)

DeiT-T [42] - 5.7 22.8 1.3 32 32 1.3 × 103 72.2
T2T-T [63] - 4.3 17.2 1.1 32 32 1.1 × 103 71.7
PiT-T [14] - 10.6 42.4 1.4 32 32 1.4 × 103 72.4
LocalViT-T [21] - 5.9 23.6 1.3 32 32 1.3 × 103 74.8
FQ-ViT [24] Model-wise 5.7 5.7 1.3 8 8 80.6 71.6
Q-ViT [20] Head-wise 5.7 - - 4-8 4-8 - 72.8
QUASAR-S (ours) Row-wise 5.9 4.1 1.4 4 & 8 6 45.6 74.9
PVT [51] - 24.5 98.0 3.8 32 32 3.9 × 103 79.8
DeiT-S [42] - 22.9 91.6 4.6 32 32 4.8 × 103 79.9
Swin-T [26] - 28 112.0 4.5 32 32 4.7 × 103 81.2
BossNAS [18] - - - 3.4 32 32 3.5 × 103 80.5
PTQ [27] Layer-wise 22.9 16.6 4.6 6-10 6-10 - 75.1
FQ-ViT [24] Model-wise 22.9 22.9 4.6 8 8 294.4 79.1
Q-ViT [20] Head-wise 22.9 - - 4-8 4-8 - 80.1
QUASAR-L1 (ours) Row-wise 14.7 9.8 3.2 4 & 8 6 103.8 78.6
QUASAR-L2 (ours) Row-wise 22.6 15.8 4.8 4 & 8 6 163.2 80.4

Table 6: Comparison between different settings of QUASAR-
Small with and without knowledge distillation (KD) and su-
pernet layer scaling (SLS) on ImageNet dataset.

Model Setting #Params Quantization Top-1 Acc.
KD SLS (M) Scheme (%)

DeiT-T [42] No No 5.7 W32A32 72.2
DeiT-T (quant) No No 5.7 W8A8 71.5

Ours No No 5.9 W8A8 74.1
Ours Yes No 5.9 W8A8 75.6
Ours No Yes 5.9 W8A8 74.9
Ours Yes Yes 5.9 W8A8 76.1

Table 7: Comparison between different settings of 8-bit quan-
tization mixed-ratio and quantization schemes.

Scheme Model Size (MB) 8-bit mixed-ratio (%) Acc. (%)

Fixed row-wise 3.6 23 73.5
Flexible row-wise 3.6 23 74.2
Fixed row-wise 4.1 39 74.1
Flexible row-wise 4.1 39 74.9

As shown in Table 5, we present three Quasar models for dif-
ferent accuracy levels: QUASAR-S searched within the QUASAR-
Small supernet, and QUASAR-L1, QUASAR-L2 searched within the
QUASAR-Large supernet.

Our QUASAR-S achieves 74.9% top-1 accuracy with only 4.1 MB
model size and 1.4 GMACs, Compared with the representative ViT-
based model LocalViT-T [21] under a similar accuracy, our model
size is only 17.4% of that in LocalViT-T; although the GMACs num-
bers are similar, our MAC unit is much more hardware efficient
as it is for a 4-bit/8-bit weight and a 6-bit activation instead of a
32-bit floating-point MAC unit in LocalViT-T. For a higher model

Table 8: Comparisons of FPGA implementations for ViTs
on ImageNet, including DeiT-S and Auto-ViT-Acc from [22],
and our Quasar-ViT, all running at 150MHz on the same
AMD/Xilinx ZCU102 embedded FPGA platform.

DeiT-S Auto-ViT Quasar-ViT
-Acc L2 L1 S

Quant. No Mixed Mixed Mixed Mixed
Scheme Precision Precision Precision

Weight 32 4 & 8 4 & 8 4 & 8 4 & 8
Act. 32 8 6 6 6

Top-1 Acc. 79.9 78.7 80.4 78.6 74.9
kLUT 47% 67% 66% 66% 65%
FF - - 31% 31% 30%
DSP 69% 62% 69% 69% 69%
BRAM - - 44% 44% 44%

accuracy level, our QUASAR-L1 and QUASAR-L2 achieve 78.5%
and 80.4% top-1 accuracy, respectively. Among them, QUASAR-L2
only has a 15.8 MB model size with a computation volume of 4.8
GMACs, which obtains the smallest BOPs with a similar level of
accuracy compared with other baselines. Specifically, compared
with PTQ [27] (16.6 MB, top-1 75.1%), QUASAR-L2 achieves a simi-
lar model size and GMACs with 5.2% higher accuracy. Compared
with ViT NAS framework BossNAS [18], we additionally achieve
low-bit quantization with a much smaller BOPS and similar ac-
curacy. Compared with quantization-aware training framework
Q-ViT [20] using multiple quantization bit-widths in the range of 4
to 8, which incurs inefficiency and hardware under-utilization, our
results show better accuracy with a more unified and hardware-
friendly quantization scheme.
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5.3 Comparison of Hardware Results on FPGA
We implement a proof-of-concept hardware accelerator for our
Quasar-ViT on the AMD/Xilinx ZCU102 embedded FPGA platform.
We also compare our results to Auto-ViT-Acc [22], the state-of-
the-art FPGA accelerator for ViT with mixed-scheme quantization
(without NAS). We retrieve the hardware results for Auto-ViT-Acc
(which is quantized from DeiT-S) and the original DeiT-S on the
same Xilinx ZCU102 FPGA platform from [22].
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Figure 9: Comparisons between DeiT-S, Auto-ViT-Acc
from [22], and our Quasar-ViT.

As shown in Table ?? and Figure 9, our approach consistently
outperforms the previous work. Specifically, compared with DeiT-
S [42], our QUASAR-L2 achieves 2.6× higher inference frames per
second (FPS) with 0.5% better accuracy. Compared with Auto-ViT-
Acc [22], our QUASAR-L1 achieves 1.6× higher FPS (159.6) with
a similar model accuracy level, and our QUASAR-L2 achieves a
similar level of FPS with 1.7% better top-1 accuracy.

The improvement in model accuracy and inference performance
within our framework is attributed to two key factors. Firstly, our
approach involves the training and search for a customized network
architecture, specifically tailored for both the mixed-precision quan-
tization schemes and the targeted inference latency. This strategy
enhances adaptability and efficiency, surpassing the achievements
of previous methodologies.

Secondly, our novel supernet training algorithm, coupled with
the proposed hybrid DSP packing design, allows for distinct quanti-
zation mixed ratios across various model layers. This fine-grained
model achieves better flexibility than the previous approaches, un-
leashing the full potential of mixed-precision quantization.

With regard to the efficiency of our hardware accelerator de-
sign, the performance is mainly limited by DSP, LUT, and off-chip
memory bandwidth. On par with Auto-ViT-Acc [22], our design
achieves 150MHz frequency with about 66% usage of LUTs and
69% DSPs without timing violations. Note a typical FPGA design
usually utilizes approximately 60% to 70% of the available FPGA
resources; otherwise, it may fail during the placement and routing
phase due to congestion or result in a lower operating frequency.
Without considering the timing violation, the maximum theoretical
expected performance is based on the 100% utilization ratio for both

DSP, LUTs, and bandwidth, which can achieve about 1.47x of our
reached FPS for the same model.

5.4 Other Transformer-based Model Accuracy
Results

To demonstrate the scalability and versatility of our methods, we
applied them across various datasets and applications, notably de-
ploying them on a large language model (LLM). This choice is mo-
tivated by two key factors. Firstly, LLM shares a transformer-based
architecture similar to that of Vision Transformer (ViT), aligning
with the framework that we propose. Secondly, LLM is frequently
integrated with ViT in text-to-image/video applications, making
it an ideal candidate to showcase the scalability of our approach
across both models and its potential for real-world applications.

Our comparative analysis, presented in Table 9, utilizes the
renowned LLM model, LLaMA, as the foundation for our supernet.
We juxtapose our optimized results with those of LLaMA-7B [44] on
the commonly used WikiText-2 dataset for LLMs, with perplexity
score (PPL) serving as the evaluation metric, where lower scores
indicate superior performance. According to the comparison results,
our method shows a constant pattern, achieving a similar level of
PPL with a much smaller model size.

Table 9: Result comparison on large language model.

Model Model Size (GB) W # Bits A # Bits PPL

LLaMA-7B [44] 26.8 FP32 FP32 5.68
Ours 6.7 INT8 INT8 5.73
Ours 4.8 INT4 & 8 INT8 5.91

5.5 Training Cost Comparison
Prior co-design frameworks, such as APQ [50], have also delved into
the integration of neural architecture search (NAS) and quantiza-
tion techniques. Please note that APQ is based on the convolutional
neural network (CNN) and BitFusion platform [50]. To the best of
our knowledge, we compare our Quasar-ViT models (both small
and large variants) and the APQ result. As detailed in Table 10,
our approach demonstrates superior FPS performance while main-
taining comparable or even higher model accuracy, achieved at a
reduced training cost. Compared with the 2,400 GPU hours training
cost of APQ [50], our approach only consumes 768 and 1,344 GPU
hours for the small and large versions of Quasar-ViT, respectively.
Our training setting has been illustrated in Section 5.1.

Table 10: Training cost and accuracy comparison with other
NAS and quantization co-design.

Method Training cost (GPU hours) FPS Acc.(%)

APQ [50] 2400 82.2 75.1
QUASAR-S 768 101.5 74.9
QUASAR-L 1344 251.6 80.4
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6 CONCLUSION
In this work, we proposeQuasar-ViT, a hardware-oriented quantization-
aware network architecture search framework to enable efficient
ViT deployment on resource-constrained edge devices. First, we
proposed hardware-friendly quantization techniques including flex-
ible row-wise mixed-precision quantization scheme and intra-layer
mixed-precision weight entanglement in architecture search to-
wards high accuracy and low training cost for efficient implemen-
tation. Second, we propose 4-bit weight atomic computation and
hybrid signed/unsigned DSP packing for FPGA implementation,
then incorporate latency/resource modeling to enable the hardware-
oriented architecture search. Third, we extend the supernet layer
scaling technique to further improve the training convergence and
supernet accuracy. We also demonstrate the compatibility of our
proposed framework with knowledge distillation during super-
net training. Finally, we developed an efficient hardware-oriented
search algorithm—integrated with hardware latency and resource
modeling—to search the efficient subnet with high accuracy under
a given inference latency target and implemented the searched
model on real FPGA hardware for validation. From the experiment
evaluation results, our approach achieves 101.5, 159.6, and 251.6
FPS on the AMD/Xilinx ZCU102 FPGA board with 80.4%, 78.6%,
and 74.9% top-1 accuracy for ImageNet, respectively, consistently
outperforming prior works.
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