
MAD-HiSpMV: Matrix Adaptive Design with Hybrid Row Distribution for
Imbalanced SpMV Acceleration on FPGAs

MANOJ B. RAJASHEKAR, AKHIL R. BARANWAL, XINGYU TIAN, and ZHENMAN FANG, Simon

Fraser University, Canada

Sparse matrix-vector multiplication (SpMV) is fundamental in numerous applications such as scientific computing, machine learning
(ML), and graph analytics. While recent studies have made tremendous progress in accelerating SpMV on HBM-equipped FPGAs,
there are still multiple remaining challenges to accelerate imbalanced SpMV where the distribution of nonzeros in the sparse matrix is
imbalanced across different rows. These include (1) imbalanced workload distribution among the parallel processing elements (PEs),
(2) long-distance dependency for floating-point accumulation on the output vector, (3) a new bottleneck due to the often-overlooked
dense vectors’ off-chip access after the SpMV acceleration, and (4) sub-optimal performance of generic accelerators for various types
of sparse matrices. (5) Additionally, ML workloads often consist of both SpMV and general matrix-vector multiplication (GeMV),
which suffer from kernel switching inefficiencies.

To address those challenges, we propose MAD-HiSpMV to accelerate imbalanced SpMV on HBM-equipped FPGAs with the
following novel solutions: (1) a hybrid row distribution network to enable both inter-row and intra-row distribution for better balance,
(2) a fully pipelined floating-point accumulation on the output vector using a combination of an adder chain and register-based
circular buffer, (3) matrix adaptive design configurations generated by our automation framework via design space exploration (DSE)
to maximize performance for the given matrix, and (4) a GeMV overlay built into the same kernel for efficient acceleration of mixed
workloads. Experimental results demonstrate that the DSE-picked configuration of MAD-HiSpMV achieves a geomean speedup of
1.3x (up to 2.12x) for the SpMV benchmark matrices and achieves a geomean 1.15x (up to 1.54x) better performance per watt, when
compared to state-of-the-art generic designs. For the SpMV benchmark matrices, compared to Intel MKL running on a 24-core Xeon
Silver 4214 CPU, MAD-HiSpMV achieves a geomean speedup of 8.80x. Compared to cuSparse running on an Nvidia GTX 1080ti GPU,
MAD-HiSpMV achieves a geomean of 2.57x better performance per watt. Additionally, a GeMV overlay built into MAD-HiSpMV
achieves a peak throughput of 156.7 GFLOPS, which is 2.64x better than the Vitis L2 GeMV benchmark on U280, and performs 2.7x
better for an end-to-end mixed workload, when compared to Intel MKL running on a 24-core Xeon Silver 4214 CPU. MAD-HiSpMV is
available at https://github.com/SFU-HiAccel/HiSpMV.
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1 Introduction

Sparse matrix-vector multiplication (SpMV) is a fundamental mathematical operation used in various fields, including
scientific computing [9, 15], circuit simulation [12], machine learning [14, 18, 19, 39, 40], and graph analytics [4, 25]. It
mainly involves multiplying a sparse matrix (with many zero entries) by a dense vector, resulting in a new dense vector.
More specifically, the SpMV operation is described in Equation 1.

®𝑦 = 𝛼.A × ®𝑥 + 𝛽.®𝑦 (1)
where A is a sparse matrix, ®𝑥 and ®𝑦 are dense vectors, 𝛼 and 𝛽 are scalar constants. Since the sparse matrix has no data
reuse and has irregular distribution of nonzero elements (i.e., random memory access), it poses great challenges in
accelerating SpMV on FPGAs.

Algorithm 1 Tiled SpMV acceleration w/ cyclic row-wise partition
1: for (𝑟 = 0; 𝑟 < 𝑅; 𝑟 = 𝑟 + 𝑅𝑡 ) do
2: 𝑦_𝐴𝑥 [𝑅𝑡 ] ← ®0 ⊲ buffer temporary output

−−−→
𝑦_𝐴𝑥

3: for (𝑝 = 0; 𝑝 < 𝑃 ; 𝑝 + +) do in parallel ⊲ P = #PEs
4: for (𝑐 = 0; 𝑐 < 𝐶 ; 𝑐 = 𝑐 +𝐶𝑡 ) do
5: 𝑏𝑢𝑓 _𝑥 [𝐶𝑡 ] ← 𝑥 [𝑐 : 𝑐 +𝐶𝑡 ) ⊲ load ®𝑥 buffer
6: for all (𝑟%𝑃 = 𝑝 | 𝑎𝑟𝑐 ∈ A | 𝑎𝑟𝑐 ≠ 0) do ⊲ stream 𝑎𝑟𝑐
7: 𝑦_𝐴𝑥 [𝑟%𝑅𝑡 ] + = 𝑎𝑟𝑐 ∗ 𝑏𝑢𝑓 _𝑥 [𝑐%𝐶𝑡 ] ⊲ A × ®𝑥
8: for (𝑖 = 𝑟 ; 𝑖 < 𝑟 + 𝑅𝑡 ; 𝑖 + +) do ⊲ stream & compute −−−−→𝑦_𝑜𝑢𝑡
9: 𝑦_𝑜𝑢𝑡 [𝑖 ] ← 𝛼 ∗ 𝑦_𝐴𝑥 [𝑖%𝑅𝑡 ] + 𝛽 ∗ 𝑦_𝑖𝑛[𝑖 ]

Recent studies [11, 24, 34] have made great progress in harnessing HBM-based FPGAs to overcome those memory-
bound challenges. A common processing pattern in these approaches involves three key techniques, as illustrated in
Algorithm 1. Assume the sparse matrix A has 𝑅 rows and 𝐶 columns, and each time one tile of A is processed by 𝑃
number of processing elements (PEs): 𝑅𝑡 and 𝐶𝑡 are the tile sizes along rows and columns, respectively. First, nonzero
elements within a tile of A are streamed into 𝑃 PEs from multiple HBM channels; line 6 in Algorithm 1 traverses all the
(𝑟, 𝑐) indices that have a nonzero in the A tile. A distinct set of rows is usually cyclically assigned to each PE (and each
HBM channel), with the aim of a more balanced workload partition. Second, the input vector ®𝑥 is tiled and buffered
on-chip as 𝑏𝑢𝑓 _𝑥 [𝐶𝑡 ] (size of 𝐶𝑡 , line 5 in Algorithm 1), and the temporary output vector 𝑦_𝐴𝑥 [𝑅𝑡 ] (size of 𝑅𝑡 , line 2)
for computing A × ®𝑥 (a tile) is processed on-chip (line 7), which limit the random accesses to on-chip memory only. The
input vector buffer 𝑏𝑢𝑓 _𝑥 [𝐶𝑡 ] is either duplicated (example in Algorithm 1) or dynamically shared by multiple PEs.
Lastly, a tile of the output vector ®𝑦 (tile size of 𝑅𝑡 ) is streamed in (−−−→𝑦_𝑖𝑛) and out (−−−−→𝑦_𝑜𝑢𝑡 ), and partitioned in the same
cyclic fashion as matrix A.

However, existing approaches [11, 24, 34] no longer work effectively when accelerating imbalanced SpMV where
the distribution of nonzeros in the sparse matrix is highly imbalanced across different rows. For instance, Figure 1
illustrates the nonzero distribution of the ℎ𝑎𝑛𝑔𝐺𝑙𝑖𝑑𝑒𝑟_3 matrix used in the optimal control solver [6], where one row
contains nearly 1,000 times more nonzero elements compared to the average number of nonzeros in other rows. Such
imbalanced matrices are commonly used in multiple application domains, such as optimal control solver [6], orbit
transfer [5], circuit simulation [10], and natural language processing [10], which create multiple new challenges for
efficient SpMV acceleration. Moreover, recent studies such as FlightVGM [29] and FlightLLM [43] have shown the
potential of implementing the latest large language and video models with sparsification on FPGAs. In such AI models,
the sparsity of the layers can vary, and in such cases, we need an accelerator that can process both sparse and dense
matrices, which is also explored in one of the recent studies [36]. Such workloads with both SpMV and GeMV suffer
from the overhead of switching between two different kernels, motivating us to design an overlay for both SpMV and
GeMV. In summary, the following problems are addressed in this work:
Manuscript submitted to ACM
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(b) Row Distribution
Fig. 1. Motivation: highly imbalanced nonzero distribution of the hangGlider_3 matrix in optimal control solver [6]

1). Imbalanced Workload: For the highly imbalanced matrices such as the example in Figure 1, the cyclic row
assignment strategy used in existing SpMV accelerators [11, 24, 34] (illustrated in Algorithm 1) results in a severe
workload imbalance among PEs, which can lead to up to 280x slowdown for the computation time of A × ®𝑥 in our
evaluated imbalanced matrices.

2). Long-Distance RAW Dependency: Inside each PE, the floating-point accumulation on the temporary output
vector 𝑦_𝐴𝑥 [𝑟%𝑅𝑡 ] (line 7 in Algorithm 1) causes a read-after-write (RAW) dependency when processing multiple
nonzero elements from the same row (i.e., same 𝑟 , different 𝑐) consecutively. Due to the long latencies (10 clock cycles)
involved in the floating-point addition and read/write operations on the large buffer 𝑦_𝐴𝑥 , this RAW dependency
inhibits effective pipeline (leading to pipeline stalls) to process nonzero elements from the same row.
Existing studies [11, 34] usually use re-ordering techniques to schedule the processing of nonzeros from other
rows to fill in the pipeline gap (stalls) during the RAW dependency waiting cycles. However, this no longer works
effectively for highly imbalanced matrices such as the example in Figure 1, as there are significantly fewer nonzeros
in other rows available to fill in the pipeline stalls between the nonzeros in the densest row.

3). Input/Output Dense Vector Off-Chip Access Latency: Using a single design with a fixed number of HBM
channels for sparse matrix and dense vectors is not optimal for all the matrices. In matrices with extremely low
density (e.g., 10−4 or lower), the off-chip memory access for the input dense vector ®𝑥 and output vector −−−→𝑦_𝑖𝑛/−−−−→𝑦_𝑜𝑢𝑡
could become a new performance bottleneck after the acceleration of SpMV, which is often overlooked in prior
studies [11, 24, 34].

4). Resource v/s Optimization Trade-offs: Using a generic accelerator with a fixed set of optimizations is sub-optimal,
as these optimizations consume more resources and limit the total number of PEs, which can be detrimental to
the matrices that do not see substantial benefit from certain optimizations. For example, a well-balanced matrix
performance is better with a 192 PE without the optimization for addressing imbalanced row distribution, compared
to a 128 PE design with that optimization.

5). Applications with Mixed Workload: In certain applications like machine learning, models often have both dense
and sparse linear layers, which necessitate the support for both SpMV and GeMV kernels on the hardware. Using
different bitstreams for these kernels requires re-configuration of the FPGA every time we switch kernels, which
has a big overhead, outweighing the speedup offered by the kernels.
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In this work, we build MAD-HiSpMV to accelerate imbalanced SpMV and GeMV on HBM-equipped FPGAs, with the
following novel features:

1). Hybrid Row Distribution Network: To achieve a more balanced workload distribution, we design a hybrid row
distribution network such that the same set of PEs can either work on different rows (inter-row distribution) or
collaboratively work on a single row (intra-row distribution).

2). Fully Pipelined Floating-Point Accumulation: To address the long-distance RAW dependency issue, we propose
two techniques to achieve fully pipelined floating-point accumulation. First, to conceal the read/write latency to the
large buffer 𝑦_𝐴𝑥 , we design a small register-based circular buffer in each PE for fast access of the intermediate
accumulation result. This could essentially reduce the dependency distance from 10 to 5. Second, to hide the latency
of the single floating-point adder for accumulation, we implement a small adder chain (thanks to the reduced
dependency distance) to independently pre-add results from the same row before accumulation, thus avoiding
pipeline stalls without the need of scheduling nonzeros from other rows.

3). Matrix Adaptive Design: In MAD-HiSpMV, we build matrix adaptive designs, which are configured with an
optimal number of HBM channels for the sparse matrix and dense vectors, along with enabling the right combination
of the aforementioned optimizations that are optimal for the given input matrix. The automation tool is equipped
with a Design Space Exploration (DSE) to perform this customization.

4). Dense Overlay: In MAD-HiSpMV, the automation tool provides an optional flag to implement PEs with a dense
overlay, and allows the execution of both SpMV and GeMV on the same kernel, thus avoiding the re-configuration
of different bitstreams while executing a mixed workload.

We previously built HiSpMV [33] (our conference version) on top of state-of-the-art open-source SpMV accelerator
Serpens [34] due to its superior performance among existing studies, with the aforementioned new features to accelerate
imbalanced matrices. In MAD-HiSpMV, we build matrix adaptive designs, unlike the prior generic design used for all the
input matrices.We evaluate the performance of MAD-HiSpMV using a dataset comprising 10 balanced and 10 imbalanced
matrices from the widely used SuiteSparse [10], with the balanced matrices chosen from prior SpMV studies [24, 34].
On AMD-Xilinx Alveo U280 FPGA, for balanced matrices, the MAD-HiSpMV DSE picked best configurations achieve
geomean speedups of 1.34x, 1.31x, 1.06x, 1.7x, 2.03x and 1.22x over prior studies Serpens-24 [34], AMD design [24],
HiHiSpMV [37], Cuper [42], CoSpMV+ [38] and HiSpMV-20 [33] respectively. For imbalanced matrices, MAD-HiSpMV
configurations achieve geomean speedups of 23.0x, 5.2x, 26.79x, 3.43x and 1.51x over prior studies Serpens-24 [34],
HiHiSpMV [37], Cuper [42], CoSpMV+ [38] and HiSpMV-16 [33], respectively.

In addition, MAD-HiSpMV achieves geomean speedups of 6.19x and 12.51x over Intel MKL running on a 24-core
Xeon Silver 4214 CPU, for balanced and imbalanced matrices, respectively. It also achieves a geomean of 2.95x and
2.24x better performance per watt (GFLOPS/watt) compared to Nvidia cuSparse running on the GTX 1080ti GPU, for
balanced and imbalanced matrices, respectively. Furthermore, the MAD-HiSpMV configuration built with dense overlay
achieves a peak GFLOPS of 104.0 and 156.73 on AMD-Xilinx Alveo U50 and U280, respectively, for the matrix size of
8192 × 8192, which surpasses the performance of Vitis L2 GeMV benchmarks on both U50 [2] and U280 [13] by 2.6x.
Finally, MAD-HiSpMV performs 2.7x better for an end-to-end neural network with mixed workload, when compared to
Intel MKL running on a 24-core Xeon Silver 4214 CPU.
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Table 1. Comparison of MAD-HiSpMV with prior SpMV accelerators on HBM-based FPGA. *The configuration of hybrid row
distribution is optional, and it can either use an adder chain or reordering as conflict resolution based on the input matrix.

Accelerator

No. of HBM
Channels

Assigned for
Sparse Matrix

and
Dense Vectors

Imbalanced
Workload

RAW Dependency
on Output Buffer

Input
Vector
Buffer

Geomean
GFLOPS

Distance
Reduction

Resolution
Technique

PE
Access

Bala-
nced

Imbal-
anced

Serpens-16 [34] Fixed X None
Distance: 10 Re-Ordering Private

Copy 33.23 1.22

Serpens-24 [34] Fixed X None
Distance: 10 Re-Ordering Private

Copy 54.67 1.23

HiSparse-PB [11] Fixed X IFWQ
Distance: 7

Partial Sum
Buffers

Dynamic
Sharing 9.86 1.12

HiSparse-RI [11] Fixed X IFWQ
Distance: 7 Re-Ordering Dynamic

Sharing 9.78 0.85

AMD design [24] Fixed X N / A Dynamic
Stall

Dynamic
Sharing 43.48 N / A

HiSpMV-16 [33]
(our previous design) Fixed Hybrid Row

Distribution
Circular Buffer
Distance: 5 Adder Chain Hybrid

Buffering 39.14 18.72

HiSpMV-20 [33]
(our previous design) Fixed Hybrid Row

Distribution
Circular Buffer
Distance: 5 Re-Ordering Hybrid

Buffering 46.47 16.04

Cuper [42] Fixed X None
Dsitance: 10

Partial Sum
Buffers

Private
Copy 33.3 1.05

HiHiSpMV [37] Fixed X BRAM Buffer
Distance: 5 Adder Chain Private

Copy 53.4 5.43

CoSpMV+ [38] Fixed Input Specific
Design Parameters

Register Chain
Distance: 5 Adder Chain Dynamic

Sharing 27.94 8.22

MAD-HiSpMV
(this work) Input Specific Hybrid Row

Distribution*
Circular Buffer
Distance: 5

Adder Chain/
Re-Ordering*

Private
Copy 56.8 28.23

2 Related Work

2.1 SpMV Accelerator Design

In Table 1, we present a detailed breakdown of the novel contributions that set our work apart from the other SpMV
accelerators. We published our first work, HiSpMV [33], with two of the key contributions presented in this journal
extension, which include a hybrid-row-distribution for addressing imbalanced row distribution, a register-based circular
buffer for reduced dependency distance, and an adder-chain to resolve RAW conflicts of the long latency floating-point
accumulation on the output buffer. However, in this work, we introduce several novel features, including matrix adaptive
design to address inefficiencies of generic accelerators for various input matrices, and a dense overlay to support GeMV
on the same kernel, thereby improving the efficiency of mixed workloads.

2.1.1 Input Specific Design: The recent work CoSpMV [38] attempts software and hardware co-design for SpMV
acceleration, with their hardware primarily optimized for DDR-based FPGAs. They nonetheless managed to scale up
the design for HBM-based FPGAs. However, there are limitations on the hardware configurations they can generate
for different input matrices, and the lack of support for imbalanced row distribution results in inferior performance
compared to our designs.

2.1.2 Dependency Distance and RAW Conflict Resolution: After HiSpMV [33], the works such as HiHiSpMV [37], and
CoSpMV [38] were also able to achieve a reduced dependency distance (𝑑𝑑) of 5. While the solution in CoSpMV [38] is
similar to our solution of using local register-based small buffers for accumulation instead of accumulating directly on

Manuscript submitted to ACM
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Table 2. GeMV performance comparison of MAD-HiSpMV with Vitis L2 GeMV benchmarks

Kernel
(Device)

Vitis L2 GeMV
(U50) [2]

MAD-HiSpMV
(U50)

Vitis L2 GeMV
(U280) [2]

Vitis L2 GeMV
(U280) [13]

MAD-HiSpMV
(U280)

Num. Of HBM Ch.
(for streaming A) 16 16 16 32 24

Peak GFLOPS
(8192 x 8192) 40.32 104.0 40.35 59.37 156.73

URAM buffers, HiHiSpMV [37] gets rid of the URAMs completely and uses BRAM buffers instead. However, this results
in reduced output buffer size, and the design fails to run for the matrices with larger dimensions. Other studies, such
as Cuper [42] and HiSparse-PB [11], use partial sum buffers, where the accumulation is done on multiple partial sum
output buffers; however, this demands 𝑑𝑑 times more buffer storage to store the same size of the output vector.

2.1.3 Input Buffer Access: There are two primary methods by which the PEs can access the input vector. In the first
approach, a private copy is used in the studies [34, 37, 42], where the input vector is replicated for each PE to access it
without any dependencies with other PEs. The other approach, dynamic sharing, is used in the studies [11, 24, 38], which
involves sharing a single partitioned copy of the input vector among multiple PEs. Although this method consumes
fewer on-chip memory resources, it leads to conflicts when various PEs want to access the same partition. Based on our
analysis (Table 1), the performance benefit of the private copy outweighs its increased on-chip resource consumption.

2.1.4 Other Studies: Prior to Serpens, several designs aimed to accelerate graph applications through SpMV. GraphLily
[20] targets graph applications presented in SpMV, and designs a general SpMV accelerator with an overlay design, but
it only reaches 165MHz with limited performance. HitGraph [44] proposes a graph processing acceleration framework
that can perform SpMV. ThunderGP [7] is an HLS-based graph processing framework that can perform graph partition
automatically for various graph algorithms. Both HitGraph and ThunderGP only utilize DDR memory, and none of the
above designs is specialized for SpMV. Jain et al. [23] present an accelerator design based on the AMD/Xilinx GEMX
SpMV engine, but the performance is much lower. Liu et al. [28] reorder the data to solve the input vector conflict and
design an adder tree to resolve the write conflict when multiple PEs work on the same row. However, their design does
not address the RAW dependency for accumulation and can hardly scale to larger FPGAs. Li et al. [27] propose a novel
compressed format tackling inefficient memory access, though scalability remains unaddressed. Other SpMV-related
accelerator designs, like SpaceA [41] and GraphR [35], are only evaluated in simulation.

2.2 GeMV and Overlay Designs

Table 2 presents a summary of the performance of our GeMV overlay designs compared to the Vitis L2 GeMV bench-
marks [2, 13], highlighting the performance gains achieved by our designs. Recent studies [29, 36] further emphasize the
growing role of FPGAs in accelerating mixed workloads involving both sparse and dense computations. In particular,
architectures such as systolic sparse tensor slices [36] and FlightVGM [29] demonstrate significant improvements in
performance and energy efficiency, reinforcing the potential of FPGAs for next-generation AI applications.

2.3 Timing Optimization for HLS Designs

HBM and multiple dies have been adopted into modern datacenter FPGAs such as AMD-Xilinx Alveo U280. Interconnec-
tions crossing the dies with long delays introduce more challenges to improving the quality of placement and routing.
To tackle this problem, we utilize the recent PASTA [26] framework, which is built on top of TAPA/Autobridge [16, 17].
Manuscript submitted to ACM
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TAPA/Autobridge proposes a task-parallel HLS programming model with a coarse-grained floorplanning approach
to improve the timing closure and clock frequency. Based on TAPA/Autobridge, PASTA further extends the task
communication channel support from FIFOs to both FIFOs and buffers, greatly improving its programmability for a
wider range of applications.

3 Motivation and High-Level Ideas

In this section, we present a comprehensive analysis of new challenges associated with accelerating imbalanced SpMV
and mixed workloads, along with our high-level ideas to address these challenges.

3.1 Imbalanced Workload

3.1.1 Analysis of the Problem: First of all, we analyze how much impact the workload imbalance can have on the
performance of existing SpMV accelerators [11, 24, 34] that cyclically assign rows onto 𝑃 number of PEs. Assume
the input matrix has 𝑅 rows and 𝐶 columns, 𝑁𝑁𝑍 is the number of nonzeros, and the density 𝜌 of the matrix is
𝜌 = 𝑁𝑁𝑍/(𝑅 ∗𝐶). Using the cyclic row assignment, each PE gets 𝑅/𝑃 rows. To illustrate the inefficiency in prior SpMV
accelerators, we define the matrix imbalance ratio 𝛿 as:

𝛿 = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 / 𝑖𝑑𝑒𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 (2)
The ideal PE workload is evenly divided among all the PEs:

𝑖𝑑𝑒𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 = 𝑁𝑁𝑍/𝑃 = 𝑅 ∗𝐶 ∗ 𝜌/𝑃 (3)
In the worst case, all the nonzeros could be allocated to one PE. But since a PE only gets 𝑅/𝑃 rows, it can only have a
maximum of 𝑅 ∗𝐶/𝑃 nonzeros. Hence, the upper limit for actual PE load is:

𝑎𝑐𝑡𝑢𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 ≤ 𝑀𝑖𝑛(𝑁𝑁𝑍, 𝑅 ∗𝐶/𝑃) (4)
If we substitute equation 3 and 4 in equation 2, we get:

𝛿 ≤ 𝑀𝑖𝑛(𝑃, 1/𝜌) (5)
From equation 5, we observe that: 1) as the matrix density 𝜌 becomes lower, the imbalance ratio’s upper bound becomes
higher; 2) having more PEs also increases the imbalance ratio’s upper bound. We have profiled a set of sparse matrices
from the widely used SuiteSparse [10] with a different imbalance ratio 𝛿 (Table 4 in Section 7.1). For imbalanced matrices
with 𝛿 ≥ 2, state-of-the-art SpMV accelerator Serpens-16 [34] only achieves a geomean of 1.22 GFLOPS, which is about
27.2x lower than that for balanced matrices.

3.1.2 Proposed Solution: To address this imbalanced workload issue, we propose a novel hybrid row distribution
network to allow the same set of PEs to work in two different modes: 1) inter-row distribution where the PEs work on
different rows assigned cyclically, and 2) intra-row distribution where all the PEs collectively work on the same row. Its
detailed design and implementation will be presented in Section 4.2 and 4.3.

3.2 Long-Distance RAW Dependency

3.2.1 Analysis of the Problem: In line 7 of Algorithm 1, a floating-point (FP) accumulation on 𝑦_𝐴𝑥 [𝑟%𝑅𝑡 ] occurs. In
FPGAs lacking dedicated hardware for FP addition, soft IPs require multiple clock cycles for this addition. Moreover,
read and write latencies are incurred for on-chip buffers like BRAM and URAM.

Consider a PE load scenario with 𝑎00, 𝑎01, 𝑎02, 𝑎09, 𝑎12, 𝑎23, where 𝑎𝑟𝑐 represents the value in the 𝑟𝑡ℎ row and 𝑐𝑡ℎ

column of the sparse matrix 𝐴 in Figure 2(a). In the second iteration, a read-after-write (RAW) dependency occurs on
𝑦_𝐴𝑥 [0], preventing the pipeline from achieving an initiation interval (II) of 1. The total latency, including reading,
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Fig. 3. Execution cycle breakdown for each component in the
well-optimized SpMV accelerator

writing, and accumulation, defines the dependency distance (𝑑𝑑) across loop iterations. Maintaining element order
would introduce 𝑑𝑑 − 1 pipeline bubbles between elements of the same row, severely impacting performance.

Prior studies such as Serpens [34] and HiSparse-RI [11] adopt an out-of-order scheduling, shown in Figure 2(b),
to schedule nonzeros from other rows to fill pipeline gaps. While effective for balanced matrices, this method faces
challenges with imbalanced matrices like hangGlider_3 in Figure 1: when dealing with a much denser row, there
are not enough nonzeros available from other rows to fill this pipeline gap. On the other hand, HiSparse-PB [11]
introduces additional 𝑦_𝐴𝑥 buffer copies to resolve this issue, which incurs more on-chip buffer overhead. The latest
AMD design [24] dynamically stalls the pipeline using a hazard resolution back-pressure unit, which does not effectively
avoid the stalls.

Another alternative is to reduce the dependency distance 𝑑𝑑 , which is crucial to minimize pipeline gaps. While FP
addition latency is unavoidable in FPGAs without hardened FP IPs, read/write latency could be eliminated by storing
a few recent 𝑦_𝐴𝑥 results in local registers. For example, HiSparse [11] uses an in-flight-wait-queue (IFWQ) to store
results in local registers and reduces 𝑑𝑑 from 10 (in Serpens [34]) to 7. However, to ensure correct values are used, it
needs to check whether the required result is in the queue by comparing row indices with every single element in the
queue. This leads to unnecessary resource overhead.

3.2.2 Proposed Solution: We propose two novel techniques to address this long-distance RAW dependency. First, we
design a register-based circular buffer to reduce the dependency distance to 5. Compared to an IFWQ in HiSparse [11],
it only requires a row index check in one location in the buffer to ascertain the presence of a 𝑦_𝐴𝑥𝑖 value. Second, we
employ an adder chain to independently pre-add A × ®𝑥 product results during the last 𝑑𝑑 iterations (including the
current 𝑖𝑡ℎ iteration) while waiting for the accumulation of 𝑦_𝐴𝑥𝑖−𝑑𝑑 to finish. In the next cycle, we can add 𝑦_𝐴𝑥𝑖−𝑑𝑑
(retrieved from the circular buffer) with the pre-added result to get the new accumulation result 𝑦_𝐴𝑥𝑖 . Therefore, we
can achieve full pipelining of the FP accumulation process without the need for out-of-order scheduling or bubbles in
the pipeline. The detailed design and implementation will be presented in Section 4.4.
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3.3 Bottlenecks on Dense Vectors and Resource v/s Optimization Trade-offs

3.3.1 Analysis of the Problems: After streaming the sparse matrix A and optimizing the computation of A× ®𝑥 , we profile
the execution cycle breakdown for each component of the SpMV accelerator described in Algorithm 1. As shown in
Figure 3, an interesting observation was made: for very low-density matrices (e.g., 𝜌 ≤ 10−4), two new bottlenecks arise
in 1) loading the input dense vector ®𝑥 (line 5 in Algorithm 1), and 2) streaming and computing the output dense vector
−−−−→
𝑦_𝑜𝑢𝑡 (line 9 in Algorithm 1). Unfortunately, these new bottlenecks are often overlooked in prior studies [11, 24, 34]. To
address these bottlenecks, allocating more HBM ports to dense vectors might appear to be a straightforward solution;
however, this approach will necessitate more on-chip resources and reduce the number of available ports for streaming
sparse matrices, potentially degrading the performance in cases where computation is the primary bottleneck.

On the other hand, optimizations such as hybrid row distribution and adder chain increase resource consumption,
meaning that a design incorporating both optimizations will be constrained to a lower number of PEs compared to a
design with only one of the optimizations. Hence, having a generic accelerator for all the matrices is not optimal; for
example, a well-balanced matrix like𝑀1 from our benchmark matrices (Table 4) benefits more from having a higher
number of PEs without hybrid row distribution (which is an optimization used to address imbalanced row distribution).
Similarly, other matrices that benefit more from a higher number of PEs rather than having the adder chain, can rely on
the re-ordering to avoid RAW conflicts from long latency floating-point accumulation on the output buffer.

3.3.2 Proposed Solution: Previously in HiSpMV [33], to tackle the bottleneck of loading the input dense vector ®𝑥 ,
we used the hybrid-buffering feature from the PASTA framework [26]. To address the output dense vector −−−−→𝑦_𝑜𝑢𝑡 , we
simply scaled the number of ports as much as possible. In this journal extension, we take advantage of the 2-port
buffer channels to reduce the overall buffer utilization, thanks to the latest improvement in the PASTA framework [26].
Moreover, this new reduced utilization allows us to scale up the number of HBM ports used to load the input dense
vector from off-chip. In MAD-HiSpMV, we build matrix adaptive accelerators which are configured with the appropriate
optimizations, the optimum number of HBM channels for the matrix A, and input/output dense vectors ®𝑥 , −−−→𝑦_𝑖𝑛, and
−−−−→
𝑦_𝑜𝑢𝑡 . This is accomplished via the automation tool with Design Space Exploration (DSE) and accurate analytical
resource and performance estimation models. The detailed design and implementation will be presented in Section 6.

3.4 Applications with Mixed Workload

3.4.1 Analysis of the Problem: In recent years, machine learning and deep learning (ML/DL) models have grown
significantly in size, making pruning essential for deploying these models on hardware with limited memory. Models
with multiple layers, which are dense initially, will end up with layers of varying sparsity after pruning. This leads to
a workload that has mixed GeMV and SpMV kernels, which are run sequentially. Switching between two different
bitstreams each time we run a different kernel is highly inefficient, as the time required to load a new bitstream could
be four orders of magnitude higher than the typical kernel runtime, as illustrated in Figure 4.

3.4.2 Proposed Solution: We observed that in our SpMV kernels, the matrix data has no reuse, and the number of
computations we can do is limited to the number of elements in A that we can read in parallel. Even after scaling
the design to use the maximum number of HBM channels to stream the A matrix, the DSPs on the FPGA are still
underutilized. Accordingly, utilizing these available DSPs, we built a dense overlay within our PEs, which can perform
GeMV on the same kernel. A global flag set by the host while invoking the kernel determines the operation mode.
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4 MAD-HiSpMV Design and Implementation

4.1 MAD-HiSpMV Architecture Overview

In our previous work, HiSpMV [33], we introduced optimizations such as hybrid row distribution and adder chain.
Building on that foundation, MAD-HiSpMV incorporates several key enhancements. Firstly, we built a design with a
scalable number of HBM ports to load the input vector instead of a single port in HiSpMV [33]. Secondly, we adopted
the design configuration based on the input matrix for optimal performance. Thirdly, we designed a PE architecture
with a dense overlay to accommodate both SpMV and GeMV on a single kernel.

MAD-HiSpMV (and HiSpMV [33]) is based on state-of-the-art open-source SpMV accelerator Serpens [34], with the
support of novel features summarized in Section 3. Figure 5 presents an overview of the MAD-HiSpMV architecture.
Initially, we divide the loading of input vectors into a distinct module, isolating it from the processing engine group
(PEG), and introduce a buffer channel to facilitate the communication between these two modules. We relocate the
accumulation and output buffer from the PEG into their dedicated 𝑦_𝐴𝑥 handler module. Moreover, we introduce new
modules, including the adder chain groups (ACG) and a hybrid row distribution network between the PEGs and 𝑦_𝐴𝑥
handlers. The design utilizes 𝐾 HBM channels to load input dense vector ®𝑥 , then chain broadcast to all the load modules
that buffer ®𝑥 on-chip. We employ a total of 𝑁 HBM channels for streaming sparse matrix𝐴, with each channel serving𝐺
PEGs, where each PEG includes 2 PEs. We have𝑀 pairs of HBM channels designated for streaming in −→𝑦𝑖𝑛 and streaming
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Algorithm 2 Bank Index Decoder Logic

1: if SR then ⊲ Split Row: Intra-row distribution
2: 𝑏𝑎𝑛𝑘_𝑖𝑑𝑥0, 𝑏𝑎𝑛𝑘_𝑖𝑑𝑥1← 𝑟𝑜𝑤_𝑖𝑑𝑥0, 𝑟𝑜𝑤_𝑖𝑑𝑥0
3: 𝑟𝑜𝑤_𝑖𝑑𝑥0, 𝑟𝑜𝑤_𝑖𝑑𝑥1← 𝑟𝑜𝑤_𝑖𝑑𝑥1, 𝑟𝑜𝑤_𝑖𝑑𝑥1
4: else ⊲ Inter-row distribution
5: 𝑏𝑎𝑛𝑘_𝑖𝑑𝑥0, 𝑏𝑎𝑛𝑘_𝑖𝑑𝑥1← 𝑃𝐸_𝑖𝑑𝑥0, 𝑃𝐸_𝑖𝑑𝑥1
6: 𝑟𝑜𝑤_𝑖𝑑𝑥0, 𝑟𝑜𝑤_𝑖𝑑𝑥1← 𝑟𝑜𝑤_𝑖𝑑𝑥0, 𝑟𝑜𝑤_𝑖𝑑𝑥1

out −−−→𝑦𝑜𝑢𝑡 . All these channels are 512 bits wide, for optimal bandwidth utilization [30]. Since each PE consumes a data
width of 64b, each PEG requires 128b, so we end up with 𝐺 = 4 PEGs per channel (i.e., 8 PEs per channel).

The PEs perform the multiplication of nonzero elements 𝑎𝑟𝑐 with 𝑥𝑐 in the input vector buffer, described as 𝑎𝑟𝑐 ∗
𝑏𝑢𝑓 _𝑥 [𝑐%𝐶𝑡 ] in line 7 of Algorithm 1. PEs also decode to which 𝑦_𝐴𝑥 handler (i.e., bank ID) the multiplication product
should be routed to, based on the encoded inter-row and intra-row distribution info (encoded during preprocessing).
Based on the decoded bank ID, a hybrid row distribution network routes the product to the corresponding 𝑦_𝐴𝑥 handler
for accumulation. Note each PE corresponds to one 𝑦_𝐴𝑥 handler, so there are 8 × 𝑁 𝑦_𝐴𝑥 handlers in total. Adder
chains are optionally placed after the PEGs to independently pre-add products before they are routed to the 𝑦_𝐴𝑥
handlers to avoid pipeline stalls caused by the long-distance RAW dependency. In addition, each 𝑦_𝐴𝑥 handler also
employs the register-based circular buffer to reduce the dependency distance to 5. Upon computing 𝑦_𝐴𝑥 [𝑅𝑡 ] = A × ®𝑥 ,
it streams in −→𝑦𝑖𝑛 , computes −−−→𝑦𝑜𝑢𝑡 (line 9 of Algorithm 1), and streams out −−−→𝑦𝑜𝑢𝑡 .

4.2 Processing Element Group (PEG) Design

For each read A channel that is 512-bit wide, it serves 4 PEGs. So each cycle, as shown in Figure 6, each PEG reads in
128-bit of A, and each PE inside the PEG reads in 64-bit of A. Similar to Serpens [34], this 64-bit data includes the 16-bit
row id 𝑟 , a 14-bit column id 𝑐 , and a 32-bit nonzero value 𝑎𝑟𝑐 , as well as two flag bits (Tile End, and Split Row, which are
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explained in Section 4.2.2). Using the column id 𝑐 , each PE fetches the corresponding (32-bit) 𝑥𝑐 value from the ®𝑥 buffer
(𝑏𝑢𝑓 _𝑥 [𝐶𝑡 ] inside the BRAM Buffer Channel in Figure 6) and performs the floating-point multiplication of 𝑎𝑟𝑐 .𝑥𝑐 . The
product, row index, and flags are then sent to the bank index decoder. Note that the ®𝑥 buffer is set to 512-bit wide, as it
achieves the best off-chip bandwidth during the load from the HBM channel [30].

4.2.1 Dense Overlay: Fig 7 shows how a single hardware block can be shared and operates differently in (a) sparse
and (b) dense mode. The operating mode is decided by a single-bit flag named ‘DENSE‘, which is set by the host. In
the sparse mode, the PE works as described in the earlier part of Section 4.2. In the dense mode, the 64-bit input to
the PE is packed with 2 elements from A, which belong to the adjacent columns of the same row. Each PE is assigned
a set of rows from the input matrix A divided cyclically, similar to the sparse mode. The elements are streamed in
column-major order, meaning the PEs will first receive the elements in column 0 and column 1 of all the rows assigned
to them within a tile. The predetermined order, along with the dimensions of the matrix, is used to determine the row
index and column index of the elements within the PE. As a dense matrix is always balanced, no balancing is needed
with intra-row mode; hence, the flag 𝑆𝑅 (Split Row) is always set to 𝑓 𝑎𝑙𝑠𝑒 in dense mode. With the row and column
indices already computed, we can use the tile dimensions to calculate the flag 𝑇𝐸 (Tile End).

Since each of the ®𝑥 buffers is 512b wide, we can access up to 16 (fp32) elements (512b aligned) in parallel. By packing
two adjacent columns, for example, columns 0 and 1, we make sure that the ®𝑥 buffer accesses can be satisfied with a
single port, as they are part of the same 512-bit aligned address. Therefore, we can compute 2 products and accumulate
them into a single result as both elements belong to the same row.
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4.2.2 Bank Index Decoder: The bank index determines the specific 𝑦_𝐴𝑥 handler the product should be routed to for
accumulation, which is encoded during preprocessing based on the intra-row and inter-row distribution. No special
encoding is needed for inter-row distribution, the row indices do not change, and the bank index for the 𝑦_𝐴𝑥 handler
is the same as the PE index. For an intra-row distribution that works on the same row 𝑟 , for every pair of adjacent
nonzeros 𝑎𝑟𝑐0 and 𝑎𝑟𝑐1 , we encode their bank index in the row id of 𝑎𝑟𝑐0 and their row index in the row id of 𝑎𝑟𝑐1 .
Accordingly, the decoder logic in Figure 6 works as follows: Besides the 2 flags 𝑇𝐸 ("Tile End": indicate the end of a tile
in the matrix data) and 𝑆𝑅 ("Split Row" (SR) indicates whether the row belongs to inter-row mode or intra-row mode),
the bank index decoder also sends 2 additional flags "Last" (indicating the end of a kernel run to the downstream tasks)
and "Dummy" (indicating this packet is used only for signaling, and not a valid result).

4.3 Hybrid Row Distribution Network

Based on the decoded bank ID, a hybrid row distribution network routes the product from each PE to its corresponding
𝑦_𝐴𝑥 handler for accumulation. Since there are 8 × 𝑁 PEs and 8 × 𝑁 𝑦_𝐴𝑥 handlers in total, this network has 8 × 𝑁
inputs and 8 × 𝑁 outputs. To make it easy for placement and routing, we built this network based on small blocks with
2 inputs and 2 outputs. Figure 8a illustrates the functionality of an example 8x8 network in two modes. i) Inter-row
distribution: When PEs work on separate rows (cyclically), all the blocks forward packets directly from inputs 0 and 1 to
outputs 0 and 1, respectively, without any additional processing. ii) Intra-row distribution: When PEs work on the same
row, the network first accumulates all products using a reduction tree and then routes the sum to the corresponding
𝑦_𝐴𝑥 handler using a reversed reduction tree; the route is highlighted in red in Figure 8a. Shown in Figure 8a, the
network is constructed using the following small blocks. Adder blocks ’A’ and ’A*’ add the results from two inputs
and direct the sum to output 1 and 0, respectively. The other output will just be a dummy packet. Switch blocks ’S’
switch the outputs, forwarding results from input 0 to output 1 and from input 1 to output 0. Routing blocks ’R’
and ’R*’ facilitate proper 𝑦_𝐴𝑥 handler routing: they route input 1 for ’R’ and input 0 for ’R*’ to either output 0 or 1
based on the target 𝑦_𝐴𝑥 handler (bank index). Fused block ’X’ combines the functionalities of both adder and routing
blocks: it adds the results from two inputs and routes the sum to the appropriate output (0 or 1) based on the target
𝑦_𝐴𝑥 handler (bank index). The decision of which mode to process each row is made in the preprocessing step, and the
detailed implementation is explained in Section 5.

4.4 Pipelined Floating-Point Accumulation

To achieve a fully pipelined floating-point accumulation, we employ a combination of a register-based circular buffer
and an adder chain.

4.4.1 Circular Buffer: Accumulating directly on buffers like URAM or BRAM introduces read/write latencies. Therefore,
as shown in Figure 8b. (ii), we utilize a local register-based circular buffer to store temporary accumulation values
to avoid such latencies. As presented in Section 3.2, one common approach is to schedule 𝑑𝑑 − 1 (𝑑𝑑 : dependency
distance) nonzeros from other rows to fill the pipeline gap during the floating-point accumulation. Therefore, the size
of this circular buffer is set to be 𝑑𝑑 , so that it can buffer 𝑑𝑑 − 1 accumulation results for other rows and one for the
current row that started 𝑑𝑑 cycles ago. When a new product for the current row comes, it knows the prior accumulation
result for this row started 𝑑𝑑 cycles ago (if it is not a new row) and can precisely find its location in the circular buffer.
Thus, it only needs one row index check to confirm if it is a new row: if not, it can use the result retrieved from the
circular buffer to add to the new product; otherwise, it starts the accumulation for a new row. Vitis HLS synthesizes
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the floating-point adder with a minimum latency of 4 cycles, and an additional cycle is needed to write the output,
resulting in a total dependency distance of 𝑑𝑑 = 5.

4.4.2 Adder Chain: Here, we consider a scenario when products sent from the PEs belong to the same row and there
is no out-of-order scheduling. Let 𝑃𝑟𝑜𝑑𝑖 be the 𝑖𝑡ℎ product in that row and 𝑦𝑖 be the accumulated sum of all these
products up to that iteration. This time, the circular buffer could store 𝑦 results from the same row. The key idea here is
to employ an adder chain to independently pre-add A × ®𝑥 product results during the last 𝑑𝑑 iterations (including the
current 𝑖𝑡ℎ iteration) while waiting for the accumulation of 𝑦𝑖−𝑑𝑑 to finish. Let us denote the pre-added result 𝑄 of the
adder chain as: 𝑄 =

∑𝑖
𝑖−(𝑑𝑑−1) 𝑃𝑟𝑜𝑑𝑖 . Then in the next cycle, we can retrieve 𝑦𝑖−𝑑𝑑 that started 𝑑𝑑 cycles ago from the

circular buffer, and add it with the pre-added result 𝑄 to get the new accumulation result 𝑦𝑖 = 𝑄 + 𝑦𝑖−𝑑𝑑 . As a result,
we can achieve full pipelining of the floating-point accumulation process without the need for out-of-order scheduling
or bubbles in the pipeline. To implement this adder chain in hardware, as shown in Figure 8b. (i), we employ 𝑑𝑑 − 1 = 4
shift registers along with 𝑑𝑑 − 1 = 4 adders. The shift registers are used as temporary memory to hold products from
the previous 𝑑𝑑 − 1 iterations. These products are then summed together using an adder chain consisting of 𝑑𝑑 − 1
adders. Additionally, we store the row indices of the products, ensuring that while adding previous products, only the
ones belonging to the current row that we are operating on are included.

5 Preprocessing

This section outlines the major steps involved in the software preprocessing necessary to prepare the input matrix for
hardware acceleration on the FPGA. The focus is primarily on the balancing algorithm, which determines the optimal
processing mode for each row within a tile, and the re-ordering algorithm used to avoid the RAW conflicts of the
floating-point accumulation on the output buffer for designs without the adder chain.

5.1 Balancing Algorithm

As stated in Section 4.3, the objective of the balancing algorithm (Algorithm 3) is to identify which rows within a tile
should be processed in the intra-row mode to ensure that the workloads between the PEs are balanced. Initially (lines
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1-3 in Algorithm 3), all the rows are assigned to be processed in inter-row mode, where each PE works on different
rows. We compute the total workload of this assignment according to Equation 6.

workloadTOT (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠, 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠) = max{workloadPE (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠, 𝑗) | ∀𝑗 ∈ [0, 𝑃)} + extraload(𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠) (6)

The total workload consists of two parts; the first part is the maximum PE workload from rows assigned to be processed
in inter-row mode, which directly correlates to the imbalance in the PE workloads. The workload of a PE 𝑃𝐸_𝐼𝐷 from
rows assigned to inter-row mode is defined by Equation 7 as the sum of the number of nonzeros (nnz) of all the rows
in inter-row mode.

workloadPE (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠, 𝑃𝐸_𝐼𝐷) =
∑︁

𝑟𝑖 ∈𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠
𝑟𝑖%𝑃=𝑃𝐸_𝐼𝐷

nnz(𝑟𝑖 ) (7)

The second part is the extra workload assigned to each PE from rows assigned to be processed in intra-row mode,
which is defined by Equation 8 as the sum of the number of nonzeros (nnz) of each row in intra-row mode divided by
the total number of PEs (𝑃 ), as in this mode all the PEs collectively work on a single row.

extraload(𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠) =
∑︁

𝑟𝑖 ∈𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠
⌈nnz(𝑟𝑖 )

𝑃
⌉ (8)

After computing the total workload of the initial assignment, the next part of Algorithm 3 focuses on finding the row
assignments that result in the lowest total workload. For each PE 𝑝 , the workload assigned to it from inter-row mode
rows is computed and stored as𝑤𝑝 (lines 4-7 in Algorithm 3). For all the PEs 𝑞 other than 𝑝 , we keep removing the row
with the largest number of nonzeros from inter-row mode rows and add it to the intra-row mode rows until the
workload assigned to the PE 𝑞 from inter-row mode rows, denoted by𝑤𝑞 , becomes smaller than or equal to𝑤𝑝 (lines
8 - 14 in Algorithm 3). This method of row mode assignment provides 𝑃 different solutions, out of which we identify
the assignment with minimum workload (lines 15 - 19 in Algorithm 3) as the final assignment.

Algorithm 3MAD-HiSpMV balancing algorithm

1: 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠 ← {} ⊲ initialize as empty
2: 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠 ← {∀𝑖 | 𝑖 ∈ [0, 𝑅𝑡 )} ⊲ initialize with all the rows within the tile
3: 𝑊𝑏𝑒𝑠𝑡 ← workloadTOT (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠, 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠) ⊲ compute workload of initial assignment
4: for all 𝑝 ∈ [0, 𝑃) do ⊲ for all the PEs 𝑝 , where 𝑃 = #𝑃𝐸𝑠
5: 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠𝑝 ← {}
6: 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 ← {∀𝑖 | 𝑖 ∈ [0, 𝑅𝑡 )}
7: 𝑤𝑝 ← workloadPE (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 , 𝑝) ⊲ compute inter-row mode workload of the current PE 𝑝
8: for all 𝑞 ∈ [0, 𝑃), 𝑞 ≠ 𝑝, do ⊲ for all PEs 𝑞 other than 𝑝
9: 𝑤𝑞 ← workloadPE (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 , 𝑞) ⊲ compute inter-row mode workload of the other PE 𝑞
10: while𝑤𝑞 > 𝑤𝑝 do ⊲ while workload of 𝑞 is larger than 𝑝
11: 𝑟𝑖 ← argmax [nnz(𝑖) | ∀𝑖 ∈ [0, 𝑅𝑡 ) | 𝑖%𝑃 = 𝑞] ⊲ Identify largest row 𝑟𝑖 assigned to 𝑞
12: 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠𝑝 ← 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠𝑝 ∪ {𝑟𝑖 } ⊲ add 𝑟𝑖 to intra-row
13: 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 ← 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 \ {𝑟𝑖 } ⊲ remove 𝑟𝑖 from inter-row
14: 𝑤𝑞 ← 𝑤𝑞 − nnz(𝑟𝑖 ) ⊲ update workload of 𝑞

15: 𝑊𝑝 ← workloadTOT (𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝 , 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠𝑝 ) ⊲ compute workload of the current assignment
16: if𝑊𝑝 <𝑊𝑏𝑒𝑠𝑡 then ⊲ if current assignment is better
17: 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠 ← 𝐼𝑛𝑡𝑟𝑎𝑅𝑜𝑤𝑠𝑝 ⊲ store current assignment
18: 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠 ← 𝐼𝑛𝑡𝑒𝑟𝑅𝑜𝑤𝑠𝑝
19: 𝑊𝑏𝑒𝑠𝑡 ←𝑊𝑝 ⊲ update best workload to current
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Fig. 9. Reordering algorithm for scheduling of nonzeros in (i) within a tile of a PE to ensure fixed distance (dependency distance = 4)
between nonzeros of the same row, as shown in the final scheduled order (xi).

5.2 Re-ordering Algorithm

For some input matrices, having adder chain groups results in insignificant performance speedup compared to re-
ordering, while adding extra resource overhead. Hence, for MAD-HiSpMV configurations, targeting such matrices
is built without an adder chain. When the hardware does not have the adder chain, scheduling nonzeros from the
same row consecutively leads to Read-After-Write (RAW) conflict on the long-latency floating-point accumulation of
the output vector, as described in detail in Section 3.2. In Serpens [34], the re-ordering algorithm is used to ensure
the nonzeros from the same row within a tile are scheduled with a minimum distance of 𝑑𝑑 (dependency distance).
Whereas, in our implementation, the nonzeros from the same row within a tile are scheduled at a fixed distance of
𝑑𝑑 . The constant distance condition ensures that we only need to check the entry in the circular buffer that is 𝑑𝑑
distance away from the current entry when accumulating; more details are included in Section 4.4. Figure 9 depicts the
scheduling of six rows assigned to a PE within a tile with a dependency distance of 4 as an example.

To schedule nonzeros of the rows assigned to a PE within a tile (Figure 9.i), we first sort the rows in descending
order of number of nonzeros (Figure 9.ii). Next, we create 𝑑𝑑 = 4 bins and assign the rows in the sorted order to the bin
with the least number of nonzeros (Figure 9.iii - 9.ix). Then the final order of the scheduling (Figure 9.ix) is formed by
following the pattern that goes across the bins as shown in Figure 9.x.

6 Automation Tool

Figure 10 shows the complete automation flow for building the optimized MAD-HiSpMV accelerator, given the FPGA
platform information, including available resources, HBM properties (such as channel width, number of channels, and
frequency), and the input matrix. The design space exploration (DSE) in the tool 1○ in Figure 10 adopts the design
configuration to maximize performance for the given matrix while ensuring the resource consumption is within the
given limits. The design configuration comprises of the optimal number of HBM channels for sparse matrix 𝐴 (𝑁 ),
and dense vectors ®𝑥 (𝐾), −−−→𝑦_𝑖𝑛 / −−−−→𝑦_𝑜𝑢𝑡 (𝑀), along with which of the optimizations among adder chain and hybrid row

distribution is needed. This configuration info is then used by the code generator 2○ in Figure 10 to output source
code for both host and kernel. The kernel source code utilizes PASTA [26] HLS, which is a task-parallel programming
model with support for buffers and streams as communication channels between the tasks. PASTA 3○ in Figure 10
will transform this code to Vitis HLS and compile to RTL code using Vitis (vendor tool) for each task individually; and
performs the coarse-grained floorplanning for such task-parallel HLS designs, and the vendor Vivado tool 4○ performs
the final placement and routing.
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Fig. 10. complete automation flow of MAD-HiSpMV, integrated with the recent PASTA [26] programming framework

The PASTA tool performs the coarse-grained floorplanning by abstracting the task parallel HLS design as a directed
graph, with tasks as the nodes and communication channels as the edges. The key idea of coarse-grained floorplanning
is to divide the datacenter FPGA into multiple smaller regions and do local place and route for each node within a
smaller region to improve the timing closure. Using synthesis estimates of the tasks, the local footprint of each node is
used to find an available region on the FPGA fabric. For the edges crossing two ‘regions’, pipeline registers are added on
the edges so that the latency of all paths between two respective nodes remains the same. Finally, the edge connectivity
is optimized globally such that the number of added pipeline registers and the number of edges crossing the regions are
at a minimum, while also ensuring the resource utilization of all the regions is relatively balanced.

To perform the design space exploration, we build our analytical resource and performance estimators and search
iteratively for different designs.

6.1 Resource Estimation

MAD-HiSpMV design is composed of a small set of unique tasks as shown in Figure 5, and connected with communi-
cation channels (buffers/FIFOs). When generating different configurations, only the number and types of tasks and
communication channels used will change.

6.1.1 Tasks: By profiling the resource utilization of all different tasks of MAD-HiSpMV beforehand, the tool can
estimate the overall resource utilization accurately from the configuration info. The resource consumption per instance
and number of instances of all the unique tasks are presented in Table 3. Note that the resources of the adder chain
task are only applicable if the hardware configuration is built with this optimization. Similarly, tasks like adder blocks,
fused blocks, routing blocks, and switching blocks are applicable if the hardware is built with hybrid row distribution

optimization. To add support for new FPGAs, the resource consumption of each task should be profiled and updated.
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Table 3. Number of instances of different tasks in MAD-HiSpMV design, and resource consumption per instance on Ultrascale+
FPGAs at 235MHz target frequency. N, K, and M are the number of HBM channels for the spare matrix, input vector, and output
vector, respectively. G is the number of PE groups per channel, F is the number of floating-point numbers per channel, and P is the
total number of PEs.

Task No. of
Instances

Resource Consumption per Instance
LUT FF DSP URAM BRAM

Read A N 98 87 - - -
Read x K 59 103 1 - -

Read y_in M 56 139 - - -
Write y_out M 66 143 - - -

Load N*G 240 245 - - -
PEG (w/o dense overlay) N*G 553 740 6 - -
PEG (w/ dense overlay) N*G 1410 1740 16 - -
Adder Chain Group N*G 2100 2000 16 - -
Adder blocks (A/A*) P-1 485 407 2 - -
Fused block (X) 1 485 407 2 - -

Routing blocks (R/R*) P-1 82 129 - - -
Switch blocks (S) P-4 82 129 - - -

Arbiter 1 1000 1000 2 - -
y_Ax Handler P 849 686 3 2 -
Compute y_out M (414 * F) + 75 (587 * F) + 166 (8 * F) + 2 - -

6.1.2 Communication Channels: To estimate the resource consumption of the register-based FIFO (i.e, streams), we
utilize the resource modeling of Autobridge [17]. For a FIFO channel of width𝑤 and depth 𝑑 , the flip-flop (FF) usage is
given by

𝐹𝐹 = 7 + (3 × ⌊log𝑑⌉)

and the look-up-table (LUT) usage, which comprises of both LUT_LOGIC and LUT_RAM is given by

𝐿𝑈𝑇_𝐿𝑂𝐺𝐼𝐶 = 15 + (3 × ⌊log𝑑⌉) 𝐿𝑈𝑇_𝑅𝐴𝑀 = 𝑤 ×
⌈
𝑑

16

⌉
.

For the BRAM-based buffer channels between the tasks Load and PEG, to match the throughput of the off-chip access ®𝑥 ,
the buffer channel needs to have parallel access to 𝐾 ×𝐶𝑊 bits, where 𝐾 and𝐶𝑊 are the number of HBM channels and
their width used to load input vector ®𝑥 , respectively. Since the BRAM36K blocks provide 2-port 32-bit interfaces, the
total number of BRAM36K blocks per buffer channel is 𝐾×𝐶𝑊32×2 . There are a total of 𝑁 ×𝐺 buffer channels, where 𝑁
and 𝐺 are the number of HBM channels for streaming sparse matrix 𝐴 and PE groups per channel of 𝐴, respectively.
Hence, the total number of BRAM blocks used by the design is given by:

#𝐵𝑅𝐴𝑀𝑠 = (𝑁 ×𝐺) ∗
(
𝐾 ×𝐶𝑊
32 × 2

)
For an HBM channel width (𝐶𝑊 ) of 512𝑏 as in our designs on U50 and U280, the value of 𝐺 will be 4 (explained in
Section 4.1), the computation of the total number of BRAMs simplifies to #𝐵𝑅𝐴𝑀𝑠 = 𝑁 × 𝐾 × 32.

6.2 Performance Estimation

In MAD-HiSpMV, the total workload can be divided into three operations, each bound by the off-chip memory
throughput. The total time is given by Equation 9.

𝑡𝑐𝑐 = ⌈
𝑁𝑁𝑍 × 𝛿
𝑁 × 8 ⌉ +

(
⌈ 𝐶

𝐾 × 16 ⌉ × ⌈
𝑅

𝑅𝑡
⌉
)
+ ⌈ 𝑅

𝑀 × 16 ⌉ (9)
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1). Compute Time (𝑡𝐴): This is the time taken to stream in the nonzero values of the matrix A and compute A × ®𝑥 ,
given by 𝑡𝐴 = ⌈𝑁𝑁𝑍

𝑃
× 𝛿⌉, where 𝑁𝑁𝑍 represents the number of nonzero elements, 𝑃 = 8 × 𝑁 is the number of

processing elements, and 𝛿 is the imbalance ratio after optimizations.
2). Buffering Time (𝑡𝑥 ): This is the time required to load ®𝑥 into on-chip buffers. It can be calculated as 𝑡𝑥 = ⌈ 𝐶

𝐾×16 ⌉ ×
⌈ 𝑅
𝑅𝑡
⌉, where𝐶 is the number of columns, and ⌈ 𝑅

𝑅𝑡
⌉ is the number of tiles along the rows. This operation is performed

using 𝐾 512-bit ports, allowing 16 (fp32) values to be loaded in parallel from each port, where there are 𝐾 such ports.
3). Output Streaming Time (𝑡𝑦 ): This represents the time needed to stream in −−−→𝑦_𝑖𝑛, compute −−−−→𝑦_𝑜𝑢𝑡 = 𝛼 ·−−−−→𝑦_𝐴𝑥 +𝛽 ·−−−→𝑦_𝑖𝑛,

and stream it out. It can be calculated as 𝑡𝑦 = ⌈ 𝑅
𝑀×16 ⌉, where𝑀 is the number of ports used to stream in/out −−−→𝑦_𝑖𝑛 /

−−−−→
𝑦_𝑜𝑢𝑡 . Each port is 512-bit wide and can access 16 float values in parallel.

6.3 Design Space Exploration

In MAD-HiSpMV, we define the HBM channel constraint in Equation 10. The terms 𝑀, 𝑁,𝐾 are defined earlier in
Section 4.1, and the term 𝐻𝐶 here corresponds to the total number of HBM channels the design is constrained to.

(2 ×𝑀) + 𝑁 + 𝐾 ≤ 𝐻𝐶 (10)

A simple way to find optimum values for the parameters would be to do an exhaustive search for all possible values of
𝑀, 𝑁 , and 𝐾 (i.e, between 1 and 𝐻𝐶), along with trying designs with and without the adder chain group and hybrid row

distribution optimizations. However, for a fixed value of𝑀 , 𝐾 and a given set of optimizations, the configuration with
the best performance is the largest value of 𝑁 that satisfies the resource constraint. Furthermore, the range of possible
different values of𝑀 and 𝐾 is limited to powers of two between 1 and 𝐻𝐶 , which ensures that the addressing logic for
on-chip access to the dense vectors only uses shifting operations (more resource efficient than integer division and
remainder operators). For every design configuration that satisfies the HBM channel constraint in Equation 10 and the
resource utilization limits (Table 5), we identify the configuration with the best performance (i.e, minimize total clock
cycles given by Equation 9).

7 Evaluation

7.1 Experimental Setup (SpMV)

We extensively compare the performance of MAD-HiSpMV with previous HiSpMV [33] designs and state-of-the-art
open-source SpMV FPGA designs such as CoSpMV+ [38], HiHiSpMV [37], Cuper [42], Serpens [34], and HiSparse [11],
as well as optimized Intel MKL library on CPU [21] and Nvidia cuSparse library on GPU [31]. We evaluate them using a
diverse set of 20 matrices from the widely used SuiteSparse [10], including 10 balanced (M1-M10) and 10 imbalanced
matrices (M11-M20). Our selection of balanced matrices aligns with those used in Serpens [34], and their imbalance
ratios are typically between 1 and 1.5. For imbalanced matrices, we deliberately choose a variety of matrices with
varying imbalance ratios (more than 2 and up to 33) and densities from different application domains. Details about
these matrices and their properties are presented in Table 4. We generate MAD-HiSpMV configurations for all 20
benchmark matrices on three different FPGAs, which include AMD/Xilinx U280, U50, and V80 HBM-based FPGAs. The
Vitis version 2023.2 was used to build and run the designs on U280 and U50. For V80, we relied on the estimations for
the comparisons, as we were unable to test the design on the hardware due to limited accessibility.
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Table 4. Benchmark sparse matrices and their properties, along with imbalance ratio (for P=128 without any optimization).

ID Filename Size
(R=C) NNZ Density Imbalance

Ratio ID Filename Size
(R=C) NNZ Density Imbalance

Ratio
M1 TSOPF_RS_b2383 38,120 16,171,169 1.11E-02 1.01 M11 c-52 23,948 202,708 3.53E-04 2.28
M2 crystk03 24,696 1,751,178 2.87E-03 1.01 M12 language 399,130 1,216,334 7.64E-06 2.29
M3 nd6k 18,000 6,897,316 2.13E-02 1.05 M13 analytics 303,813 2,006,126 2.17E-05 3.05
M4 crankseg_2 63,838 14,148,858 3.47E-03 1.07 M14 nxp1 414,604 2,655,880 1.55E-05 4.39
M5 ford2 100,196 544,688 5.43E-05 1.08 M15 poli_large 15,575 33,033 1.36E-04 4.40
M6 thread 29,736 4,444,880 5.03E-03 1.09 M16 lowThrust_7 17,378 211,561 7.01E-04 5.05
M7 PFlow_742 742,793 37,138,461 6.73E-05 1.14 M17 hangGlider_3 10,260 92,703 8.81E-04 13.47
M8 Si41Ge41H72 185,639 15,011,265 4.36E-04 1.21 M18 boyd2 466,316 1,500,397 6.90E-06 18.40
M9 mouse_gene 45,101 28,967,291 1.42E-02 1.21 M19 trans5 116,835 749,800 5.49E-05 20.30
M10 soc-Pokec 1,632,803 30,622,564 1.15E-05 1.22 M20 ASIC_680k 682,862 2,638,997 5.66E-06 32.82

Table 5. HBM interface and FPGA resource usage limits in DSE of the automation tool

FPGA FPGA Kernel↔ HBM Interface FPGA Resource Usage Limit (%) FPGA Total Available Resource
Num. of Channels
Usage Limit (HC)

Channel
Width Frequency LUT BRAM DSP URAM FF LUT BRAM DSP URAM FF

U50 28 512b 225 MHz 70 75 70 70 70 870,720 1,344 5,952 640 1,743,360
U280 28 512b 225 MHz 62 75 70 70 62 1,303,680 2,016 9,024 960 2,607,360
V80 64 256b 400 MHz 70 75 70 70 70 2,574,208 3,741 10,848 1,925 5,148,416

7.2 MAD-HiSpMV Best Configurations by DSE

Table 5 gives detailed information on the HBM and FPGA kernel interface properties and the FPGA resource utilization
limit we set for generating MAD-HiSpMV in the automation tool. The HBM on U280 and U50 has 32 channels, each
with a bus width of 256-bit at 450 MHz. To maximize the bandwidth of each channel, we choose a channel width of
512-b and a frequency of 225 MHz according to the benchmark study [30]. Although the HBM on U280 and U50 has 32
channels, we limit the total number of channels to 28, as we observe that the designs above this were often not able to
reach the target frequency consistently. The FPGA resource limitations were set based on the collective observation
of different designs that were able to achieve the target frequency consistently with our flow. The HBM on V80 has
16 channels, each with a bus width of 128-bit at 3.2 GHz. To fully utilize the bandwidth, each HBM channel can be
shared by four 256-bit AXI ports at 400MHz (128-bit * 3.2GHz/400MHz / 4 ports = 256-bit). Each AXI port provides up to
256-bit * 400MHz = 102.4Gb/s = 12.8GB/s bandwidth, and 64 AXI ports use up all available HBM bandwidth. The FPGA
resource limits were set to the maximum we were able to utilize on U280 and U50, as V80 is equipped with a dedicated
NoC operating at 1GHz for better routability. We present the MAD-HiSpMV configurations on U280, U50, and V80
generated by the DSE for the benchmark matrices in Table 6. Note that V80 has a hardened floating-point (fp32) unit,
DSP58 [1], which can process one floating-point multiply/add in one cycle. Therefore, it eliminates the necessity of the
adder chain optimization, which was used to overcome long-latency floating-point accumulation. Additionally, the tool
can also generate a dense overlay design when specified by the user. We build these designs on both U280 (Config-5)
and U50 (Config-4) with the configurations shown in Table 6.

7.3 Automation Tool Estimation Accuracy

7.3.1 Resource Estimation Accuracy: Figure 11a depicts the errors in the resource estimation of the automation tool
(explained in Section 6) for U280 and U50 configs in Table 6. The resources estimated for BRAM, DSP, and URAM are
highly accurate as their computation is very simple and unaffected by placement and routing. Albeit, there is one minor
outlier for the DSP estimation, caused by Vitis HLS opting to implement the FP accumulator with LUTs instead of
DSP, despite explicit instructions to use DSP. In contrast, the resources LUTs and FFs exhibit greater variability due to
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Table 6. DSE picked best MAD-HiSpMV configurations on U280, U50 and V80 for benchmark matrices along with configurations
with dense overlay on U280 and U50

Matrices Config-Id Dense
Overlay

Adder
Chain
Group

Hybrid
Row
Distr.

N K M G P
(#PEs)

M5, M11-15, M17-20 U280 Config-0 × ✓ ✓ 16 2 4 4 128
M10, M16 U280 Config-1 × × ✓ 20 2 2 4 160
M7 U280 Config-2 × ✓ × 20 2 2 4 160
M4, M6, M8, M9 U280 Config-3 × × ✓ 24 1 1 4 192
M1, M2, M3 U280 Config-4 × ✓ × 24 1 1 4 192
Dense U280 Config-5 ✓ × ✓ 24 1 1 4 192
M2, M7, M10, M16-17 U50 Config-0 × ✓ ✓ 8 2 4 4 64
M5, M11, M13-14, M18-20 U50 Config-1 × ✓ ✓ 12 2 2 4 96
M1, M3, M4, M6, M8-9 U50 Config-2 × × ✓ 16 1 4 4 128
M12, M15 U50 Config-3 × × ✓ 18 1 1 4 144
Dense U50 Config-4 ✓ × ✓ 16 1 2 4 128
M5, M11-15, M17-20 V80 Config-0 × × ✓ 32 8 8 2 128
M16 V80 Config-1 × × ✓ 40 8 4 2 160
M2, M4, M6-8, M10 V80 Config-2 × × ✓ 56 4 2 2 224
M1, M3, M9 V80 Config-3 × × ✓ 60 2 1 2 240

placement and routing optimization; hence, these estimations have a larger error range compared to other resources.
Nevertheless, these errors are still within the magnitude of 4%, with even lower deviations observed in the majority of
the designs.

7.3.2 Execution Time Estimation Accuracy: The performance estimation error of the automation tool for all 20 benchmark
matrices on U280 and U50 FPGAs is shown in Figure 11b. The estimation on devices has an average error of −6%, which
indicates that the tool is underestimating the total execution time. This underestimation is due to the lack of consideration
of initiation latency in the performance estimation given by Equation 9. However, for the configuration, U280 Config-4,
the error of𝑀1 and𝑀3 matrices is close to 0%, and the error of𝑀2 is 4%, unlike all the other configurations, which are
very close to −6%. When we repeat the kernel for multiple iterations to amortize the kernel invocation overhead and
get accurate kernel execution, the use of a larger FIFO depth in this particular design between PEGs and y_AX handlers
leads to a slight overlap between the consecutive kernel iterations, hence leading to the measured kernel time to be
lower than the estimated value.

7.4 Performance of MAD-HiSpMV and Prior FPGA Studies (SpMV)

The formula we use to compute GFLOPS is given by:

𝐺𝐹𝐿𝑂𝑃𝑆 =
2 × (𝑁𝑁𝑍 + 𝑅)

109 × execution time
which is a direct reflection of the execution time as 𝑁𝑁𝑍 + 𝑅 comes from the matrix and remains the same across
implementations. We conducted extensive benchmarking, running the matrices with kernels from prior works such as
HiSparse [11], Serpens [34], our previous generic designs (HiSpMV-16 and HiSpMV-20) on U280 published in FPGA
2024 [33], and recent works such as Cuper [42], HiHiSpMV [37], and CoSpMV+ [38], as well as our own MAD-HiSpMV
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Fig. 11. Automation tool resource and performance estimation error on U50 and U280. Here, ’·’ is the outliers, ’x’ represents the
median, the boxes are drawn from the 25th percentile to the 75th percentile, the horizontal line inside the box is the mean value, and
the error bars represent the range of the data (excluding the outliers).
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Fig. 12. Comparison of SpMV kernels on U280 FPGA (unless specified otherwise)

DSE picked best configurations on U280 and U50. We repeat the kernel multiple times for a single kernel call from
Xilinx Runtime (XRT) to ensure the overhead of the XRT call is amortized.

The performance comparisons are illustrated in Figure 12a for balanced matrices and Figure 12b for imbalanced
matrices. For balanced matrices, our MAD-HiSpMV DSE picked best configurations (on U280) achieves a geomean
speedup of:

• 5.81x (up to 10.24x) and 5.76x (up to 13.87x) over HiSparse-RI and HiSparse-PB designs [11]
• 1.71x (up to 2.21x) and 1.34x (up to 1.88x) over Serpens-16 and Serpens-24 designs [34]
• 1.45x (up to 1.73x) and 1.22x (up to 1.47x) over HiSpMV-16 and HiSpMV-20 designs [33] (our previous designs)
• 1.06x (up to 1.89x), 1.7x (up to 2.1x), and 2.03x (up to 2.9x) over the recent works HiHiSpMV [37], Cuper [42],
and CoSpMV+ [38], respectively
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Furthermore, for imbalanced matrices, our MAD-HiSpMV DSE picked best configurations (on U280) achieves a geomean
speedup of:

• 33.26x (up to 169.22x), and 25.27x (up to 37.16x) over HiSparse-RI, and HiSparse-PB designs [11]
• 23.07x (up to 98.26x), and 23.00x (up to 97.98x) over Serpens-16, and Serpens-24 designs [34]
• 1.51x (up to 2.12x), and 1.76x (up to 4.69x) over HiSpMV-16, and HiSpMV-20 designs [33] (our previous designs)
• 5.20x (up to 7.08x), 26.79x (up to 110.87x), and 3.43x (up to 5.27x) over the recent works HiHiSpMV [37], Cuper [42],
and CoSpMV+ [38], respectively

Notably, the HiHiSpMV [37] design, which outperforms our design by 1.15x on M3, was only able to execute for
3 balanced and 4 imbalanced matrices from our benchmark matrices. The said design can outperform our designs,
as it utilizes all 32 HBM channels on U280. HiHiSpMV uses 30% LUTs, 57% BRAMs, and 13% URAMs, compared to
our design’s resource utilization, which goes up to 60% LUTs, 73% BRAMs, and 40% URAMs. The HiHiSpMV design
encounters lower routing congestion and hence, it can utilize all HBM channels. Due to the high resource utilization and
high congestion in the bottom SLR, our designs are constrained to utilize only up to 28 channels. However, HiHiSpMV
does not support tiling and can only support smaller matrices (up to row size of 40K). Whereas our design can support
up to a row size of 1.5M in a single tile and can support multiple tiles, the only limitation for the row size is the
storage limitation of the HBM. Moreover, for imbalanced matrices, our designs outperform other works (including the
HiHiSpMV), justifying the importance and effectiveness of our work.

Moreover, our MAD-HiSpMV DSE-picked best configurations on U50 and achieves a geomean performance of 0.74x
(from 0.69x to 0.81x) compared to the U280 designs, which correlates with the fact that U50 has 0.67x of the total
resources in U280, and due to the smaller area (reduced placement and routing complexity) it achieves slightly higher
relative utilization than U280 designs.

The peak performance of MAD-HiSpMV on U280 for balanced matrices is approximately 75 GFLOPS, and for
imbalanced matrices is approximately 36 GFLOPS, while the theoretical peak throughput is 86 GFLOPS. These losses
come from the time taken by the hardware to load the input vector and update the output vector, since the actual
computation and these stages run sequentially, one after another. As the density of the matrix decreases, this loss
increases.

7.5 Comparison to CPU and GPU (SpMV)

We conducted benchmarking on both CPU and GPU platforms using the Intel MKL library [21] on a Xeon Silver 4214
CPU with 24 cores and the Nvidia cuSparse library [31] on GTX 1080ti and A100 GPUs. For a fair GPU and FPGA
comparison, we compare 1) the 16nm U280 FPGA with 460GB/s bandwidth against the 16nm 1080ti GPU with 484.4GB/s
bandwidth, and 2) the 7nm Versal (largest HBM-based) V80 FPGA [3] with 819.2GB/s bandwidth against the 7nm A100
GPU with 1,555GB/s bandwidth. Besides the V80 FPGA, all performance and power results are measured on the actual
boards. The board power consumption is measured using vendor-provided APIs (NVML for GPUs and XRT for FPGAs)
during the kernel runtime. All the kernels on FPGA were repeatedly run for 60 seconds to get the power consumption
and performance. For GPU measurement, we repeated the kernel 10000 times to get power and performance metrics, as
it was not possible to know how many times to repeat the kernel to get it to run exactly 60 seconds. The reason for
repeating the kernels is to make sure the power consumption reaches a stable value, as the power sensors on these
boards have a very low refresh rate.
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Fig. 13. Performance and Energy Efficiency Comparison

7.5.1 Projection for V80 FPGA Results: Based on the MAD-HiSpMV configurations of V80, we use the performance
estimation given by Equation 9 explained in Section 6.2, along with an additional 5% to account for the estimation errors
observed on the U280 and U50 as presented in Figure 11b. For the power consumption, we build scaled-down designs
with 3 different scaling factors (linearly spaced) for each configuration of V80 in Table 6 on U280 with channel-width of
256-b and kernel frequency of 400MHz. We measure the power consumption of these designs on the corresponding
benchmark matrices and extrapolate the power for larger designs by assuming the power scales linearly with the design
size (i.e.,𝑀, 𝑁,𝐾 ). To account for the different technology nodes of V80 (7nm) compared to U280 (16nm), we reduce the
power by 65%, as observed in the case study conducted by Taiwan Semiconductor Manufacturing Company (TSMC) [8].

7.5.2 Comparison Results: Figure 13a compares the performance (GFLOPS) between Intel MKL, NVIDIA cuSparse
on 1080ti (GPU 1) and A100 (GPU 2), MAD-HiSpMV on U280 (FPGA 1) and V80 estimate (FPGA 2). Compared to the
CPU, MAD-HiSpMV on U280 achieves a geomean speedup of 6.19x (from 3.95x up to 10.59x) for balanced matrices and
12.52x (from 4.78x up to 71.65x) for imbalanced matrices.
1080ti GPU vs. U280 FPGA. On average (geomean), U280 achieves 0.81x (from 0.5x up to 2.57x) performance of
the 1080ti GPU, over all the benchmark matrices. On the other hand, Figure 13b compares their energy efficiency in
terms of GFLOPS/Watt. U280 achieves better energy efficiency over 1080ti across all matrices; the geomean energy
efficiency improvement is 2.57x (from 1.5x up to 8.28x). The marginally lower performance of U280 can be attributed to
the underutilization of the available HBM bandwidth. To start with, the 1080ti has slightly higher memory bandwidth.
Additionally, the on-chip routing resources of the U280 fail to utilize all the HBM channels for larger designs. We
anticipate the hardened Network-on-Chip (NoC) in V80 to address this issue and better utilize all the available bandwidth
from its HBM.
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Table 7. GeMV performance per watt comparison of CPU and FPGA

Square Matrix
Size

CPU (MKL 24 threads) FPGA (MAD-HiSpMV U280)
GFLOPS Power (watts) GFLOPS/Watt GFLOPS Power (watts) GFLOPS/Watt

512 85.34 57.6 1.48 108.28 55.59 1.95
1,024 177.21 59.2 2.99 119.1 55.4 2.15
2,048 235.97 62.07 3.80 137.29 55.03 2.49
4,096 107.78 80.58 1.34 141.11 54.6 2.58
8,192 78.58 78.73 1.00 144.91 53.1 2.73

A100 GPU vs. V80 FPGA. On average (geomean), V80 achieves 0.85x (from 0.36x up to 8.45x) performance of the
A100 GPU, for all of the benchmark matrices. However, the energy efficiency of V80 is, on average (geomean) 3.88x
(from 1.55x up to 21.86x) better than the A100. Even with a nearly 2x smaller HBM bandwidth, V80 achieves only
marginally lower performance on average. And for certain imbalanced matrices M11, M15, M16, and M17, V80 has
better performance than A100. The reason is that these matrices have a much lower number of floating-point (FP)
operations (shown in the line of Figure 13a); thus, A100 has lower utilization of GPU cores and larger performance
overhead. This also leads to the A100 performing worse than the older 1080ti GPU (with fewer cores) for these matrices.
On average, the A100 GPU has improved the performance over the 1080 Ti GPU by 2.13x, while the bandwidth has
increased nearly 4x. Meanwhile, the V80 FPGA has improved its performance over the U280 FPGA by 2.23x with only a
2x bandwidth increase.

7.6 Performance of MAD-HiSpMV on GeMV and Mixed Workloads

7.6.1 GeMV Performance Comparison: To evaluate the performance of our design on GeMV, we build MAD-HiSpMV
configurations with a dense overlay on both U280 and U50. The detailed configuration of the designs is presented in
Table 6 (U280 Config-5 and U50 Config-4). We compare the performance of our aforementioned configurations against
AMD/Xilinx Vitis L2 GeMV on U50 and U280 for square matrices of sizes 512x512, 1024x1024, 2048x2048, 4096x4096,
and 8192x8192. The performance numbers for Vitis L2 GeMV on U280 and U50, with the number of HBM channels for
streaming dense matrix (𝑁 ) set to 16, are taken from the official Vitis benchmark [2], and the performance number
for Vitis L2 GeMV on U280 with 𝑁 = 32 from a recent work [13]. We also included the Intel MKL GeMV kernel’s
performance on a 24-core Xeon Silver 4214 CPU for the same matrix dimensions.

The GFLOPS achieved by all the different designs are presented in Figure 14. The performance of the designs on the
FPGA starts low for smaller matrix dimensions and increases along with the matrix dimensions, eventually saturating
at their peak performance. Whereas, in the case of the CPU kernel, the performance peaks at an intermediate matrix
size of 2048x2048, which is likely due to the optimum usage of cache memory. The CPU outperforms our FPGA designs
by 1.31x and 1.55x for the dimensions 1024x1024 and 2048x2048, respectively, while our designs outperform the CPU
at both smaller and larger dimensions by 1.43x, 1.41x, and 1.99x for 512x512, 4096x4096, and 8192x8192, respectively.
When compared to the Vitis L2 GeMV design, our design consistently performs better, and at peak performance, our
design achieves a speedup of 2.6x compared to Vitis L2 GeMV for both U50 and U280. Additionally, we also measured
the average power consumption of both MKL (24 threads) and MAD-HiSpMV on U280 for different sizes of the input
matrix. The GeMV kernel for all the sizes was run continuously for 60 seconds on both devices to get the reliable power
measurements presented in Table 7. The power consumption on the CPU increases along with the size of the matrix,
likely due to the increased memory transfers. However, the power consumption on the FPGA stays almost the same
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Xeon Silver 4214 CPU.

for all the sizes, hence making FPGAs high performing and energy efficient at larger matrix sizes than the CPU. For
GFLOPS/Watt, we observe that the MKL on CPU outperforms our design on U280 by 1.39x and 1.52x for the matrix
sizes of 1024x1024 and 2048x2048, respectively, while our design on U280 outperforms MKL on CPU by 1.31x, 1.93x,
and 2.73x for the matrix sizes 512x512, 4096x4096, and 8192x8192, respectively. These results highlight that, while
MKL achieves higher raw throughput for medium-sized matrices, MAD-HiSpMV delivers superior performance and
performance-per-watt at larger matrix sizes, with energy efficiency gains becoming increasingly significant at larger
problem sizes.

7.6.2 Mixed Workload Performance Comparison: For evaluating the end-to-end performance of a mixed workload, we
profiled the inference time of a demo neural network model with three linear layers, including one dense layer and
two sparse layers. We implement the model using PyTorch [32]. For inference on CPU, we use the default PyTorch
implementation of the dense layer as it is well optimized. Whereas for sparse layers, the sparse.mm from PyTorch is not
very well optimized, hence we utilize a more optimized MKL sparse dot implementation [22]. For inference on FPGA,
we implement a custom layer for performing both sparse and dense linear layers, which handles all the data transfers
between CPU and FPGA, as well as kernel invocation. The detailed layer configurations, as well as inference time of
different implementations for batch sizes varying from 1 to 8, are presented in Table 8.

Note that for linear layers with a batch size greater than 1, the underlying operation is a matrix-matrix multiplication
(matmul) instead of matrix-vector multiplication. To support a batch size greater than 1, we invoke the FPGA kernel
multiple times. Since the CPU (both PyTorch and MKL) implementations are already using matmul kernels that have
better data reuse, the speed-up of FPGA over CPU decreases (Table 8) as the batch size increases. Although our design
is at a disadvantage for large batch sizes, it performs 224.13x better than the CPU implementation (with sparse.mm), and
retains a better overall performance than the MKL sparse dot implementation for small batch sizes. When considering
individual layers, for the dense layer (layer 1), the FPGA performs better than the CPU (PyTorch) for small batch sizes.
For the sparse layer with a density of 0.1 (layer 2), the FPGA consistently outperforms the CPU (MKL sparse dot), which
can be attributed to the relatively larger dimensions. For the sparse layer with a density of 0.25 (layer 3), the FPGA
holds a better performance for small batch sizes. While our current design is best suited for a batch size of 1, in the
future, we plan to extend the design to support matmuls that can better utilize the data reuse of larger batch sizes.
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Table 8. End-to-end mixed workload performance comparison of MAD-HiSpMV on U280 vs PyTorch and Intel MKL on 24-core Xeon
Silver 4214 CPU.

Batch
Size

Inference Latency (in milliseconds) Overall Speed Up
(over PyTorch)Layer 1

Dense Linear
activation=ReLU
in_features=4096
out_features=8192

Layer 2
Sparse Linear (density=0.1),

activation=ReLU
in_features=8192
out_features=8192

Layer 3
Sparse Linear (density=0.25)

activation=ReLU
in_features=8192
out_features=1024

PyTorch
(CPU)

MAD-HiSpMV
(FPGA)

PyTorch
sparse.mm

(CPU)

MKL
dot

(CPU)

MAD-HiSpMV
(FPGA)

PyTorch
sparse.mm

(CPU)

MKL
dot

(CPU)

MAD-HiSpMV
(FPGA)

MKL
dot

(CPU)

MAD-HiSpMV
(FPGA)

1 1.782 0.589 250.923 0.996 0.351 3.152 0.298 0.201 83.17x 224.13x
2 1.904 1.276 265.834 1.729 0.734 3.403 0.633 0.406 63.57x 112.22x
4 3.651 2.239 266.905 3.208 1.266 3.499 1.080 0.709 34.52x 65.02x
8 4.775 4.467 284.287 5.163 2.552 5.092 1.622 1.357 25.45x 35.12x

Table 9. Resource utilization and frequency of MAD-HiSpMV configurations on U280 and U50. Effective frequency is the lowest of
the kernel frequency and half the HBM frequency.

Config-Id Design Configuration Info Frequency (MHz) Resource Utilization (%)

Dense
Overlay

Adder
Chain

Hybrid
Row
Distr.

N K M G HBM Kernel Effective LUT BRAM DSP URAM FF

U280 Config-0 × ✓ ✓ 16 2 4 4 446 235.0 223.0 60.1 60.7 28.5 26.7 29.6
U280 Config-1 × × ✓ 20 2 2 4 430 221.0 215.0 55.0 73.4 20.7 33.3 26.3
U280 Config-2 × ✓ × 20 2 2 4 450 229.0 225.0 58.9 73.4 27.8 33.3 28.5
U280 Config-3 × × ✓ 24 1 1 4 450 235.0 225.0 54.1 48.0 22.8 40.0 28.2
U280 Config-4 × ✓ × 24 1 1 4 446 210.5 210.5 60.4 48.0 31.3 40.0 31.6
U280 Config-5 ✓ × ✓ 24 1 1 4 447 235.0 223.5 61.1 48.0 33.4 40.0 32.5
U50 Config-0 × ✓ ✓ 8 2 4 4 413 235.0 206.5 55.6 51.7 26.0 20.6 28.5
U50 Config-1 × ✓ ✓ 12 2 2 4 419 229.0 209.5 70.0 70.8 30.3 30.6 34.1
U50 Config-2 × × ✓ 16 1 4 4 450 235.0 225.0 66.4 51.7 30.3 40.6 34.6
U50 Config-3 × × ✓ 18 1 1 4 422 235.0 211.0 66.3 56.5 26.5 45.6 34.1
U50 Config-4 ✓ × ✓ 16 1 2 4 410 239.0 205.0 70.6 51.7 32.4 40.6 38.0

7.7 Resource Utilization and Frequency

The resource utilization and frequencies achieved by all the configurations of U280 and U50 are listed in Table 9. To fully
leverage the maximum bandwidth of the HBM (at 450MHz) with 512-bit AXI ports, our kernels only need to achieve
a frequency of 225MHz [30]. The primary resource constraints in our current designs are LUTs and BRAMs, with
utilization reaching up to 70% for LUTs on U50 and 73.4% for BRAMs on U280. All the designs still achieve frequencies
very close to this requirement, thanks to the task parallel design with FIFO/buffer channels enabled by the PASTA
framework [26]. Note that the resource utilization presented in Table 9 also includes the Vitis platform shell’s resources,
which are required for the HLS Kernels to run on the FPGA. While the designs on U50 reach higher relative utilization
than U280, the absolute utilization of designs on U280 is higher, as U280 has 1.5x more resources than U50.

8 Conclusion and Future Work

In this work, we conducted an in-depth analysis of the new challenges involved in accelerating imbalanced SpMV
on HBM-based FPGAs and handling mixed workloads with both GeMV and SpMV. To address these challenges, we
proposed the MAD-HiSpMV architecture. First, we designed a hybrid row distribution network to achieve a more
balanced workload partition via both inter-row and intra-row distribution. Second, we implemented two techniques—a
register-based circular buffer and an adder chain—to achieve fully pipelined floating-point accumulation. Third, we
developed an automation tool equipped with design space exploration, which configures the design based on the
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input matrix to provide the best performance. In addition, we enhanced the design to perform GeMV with the same
kernel. Extensive experimental results demonstrated the performance advantage of our design over state-of-the-art
generic SpMV accelerators on FPGA (such as HiSpMV, HiHiSpMV, CoSpMV+, Cuper, Serpens, HiSparse, and AMD
design) and Intel MKL on CPU, as well as energy efficiency gains over the Nvidia cuSparse on GPU. Moreover, the
GeMV performance of our overlay design achieves 2.6x better performance than the Vitis L2 GeMV design, and for an
end-to-end mixed workload, our design performs 2.7x better than a 24-core Xeon Silver 4214 CPU.

Future Work:While the current work focuses on matrix-vector multiplication, as discussed in Section 7.6.2, the
workloads in machine learning and deep learning often require support for matrix-matrix multiplication. Additionally,
the bigger models are quantized during inference to run at a lower precision. However, our design currently only
supports full precision floating-point format. In the future, we aim to add support for different data types and sparse
matrix-matrix multiplication, along with building the actual hardware on the latest V80 FPGA.

Currently, the hardware accelerator relies on software preprocessing to encode the sparse matrix in a custom
format. While this is acceptable for applications where the matrix is reused multiple times, it would be a bottleneck for
applications where the sparse matrix is used only once. Hence, further work should be done to minimize and accelerate
the preprocessing of the sparse matrix.
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