|
Chapter Contents |
Previous |
Next |
| PCHART Statement |
| See SHWPOC in the SAS/QC Sample Library |
This example uses the GPLOT procedure and the OUTLIMITS= data set FAILLIM2 from the previous example to plot an OC curve for the p chart shown in Output 38.4.3.
The OC curve displays
(the probability that pi
lies within the control limits) as a function of p
(the true proportion nonconforming).
The computations are exact, assuming that the process is in
control and that the number of nonconforming items (Xi)
has a binomial distribution.
The value of
is computed as follows:

data ocpchart;
set faillim2;
keep beta fraction;
nucl=_limitn_*_uclp_;
nlcl=_limitn_*_lclp_;
do p=0 to 500;
fraction=p/1000;
if nucl=floor(nucl) then
adjust=probbnml(fraction,_limitn_,nucl) -
probbnml(fraction,_limitn_,nucl-1);
else adjust=0;
if nlcl=0 then
beta=1 - probbeta(fraction,nucl,_limitn_-nucl+1) + adjust;
else beta=probbeta(fraction,nlcl,_limitn_-nlcl+1) -
probbeta(fraction,nucl,_limitn_-nucl+1) +
adjust;
if beta >= 0.001 then output;
end;
call symput('lcl', put(_lclp_,5.3));
call symput('mean',put(_p_, 5.3));
call symput('ucl', put(_uclp_,5.3));
run;
The following statements display the OC curve shown in Output 38.5.1:
title "OC Curve for p Chart With LCL=&LCL, p0=&MEAN, and UCL=&UCL";
symbol i=j w=2 v=none c=yellow;
proc gplot data=ocpchart;
plot beta*fraction /
vaxis=axis1
haxis=axis2
frame
autovref
autohref
lvref = 2
lHREF=2
vzero
hzero
cframe = ligr
cHREF=cxfefefe
cvref = cxfefefe;
label fraction = 'Fraction Nonconforming'
beta = 'Beta';
run;
Output 38.5.1: OC Curve for p Chart
|
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.