|
Chapter Contents |
Previous |
Next |
| The MDS Procedure |
Running the MDS procedure with the options
proc mds fit=log level=loginterval ... ;
generally produces results similar to using the MLSCALE procedure (Ramsay 1986) with the options
proc mlscale stvarnce=constant suvarnce=constant ... ;
Alternatively, using the FIT=DISTANCE option in the PROC MDS statement produces results similar to specifying the NORMAL option in the PROC MLSCALE statement.
The MDS procedure uses the least-squares method of estimation. The least-squares method is equivalent to the maximum-likelihood method if the error terms are assumed to be independent and identically distributed normal random variables. Unlike PROC MLSCALE, PROC MDS does not provide any options for unequal error variances.
PROC MDS accepts some PROC MLSCALE options as synonyms for the options described previously, as displayed in Table 40.2.
Table 40.2: PROC MDS Options Compared to PROC MLSCALE Options| Accepted by | Related PROC MDS Option | |
| PROC MLSCALE Option | PROC MDS? | or Comments |
| SQUARE | Yes | SHAPE=SQUARE |
| INPUT=MATRIX | No | Default |
| INPUT=VECTOR | No | |
| STLABEL= | No | ID statement |
| STLBDS | No | |
| SULABEL= | No | MATRIX statement |
| SULBDS | No | |
| CONFIG | No | |
| CONFDS= | No | IN= data set |
| NEQU= | No | |
| CONSDS= | No | |
| METVAL | No | |
| METVDS | No | IN= |
| SEWGTS | No | |
| SEWGDS= | No | |
| SPLVAL | No | |
| SLPVDS= | No | |
| DIMENS= | Yes | |
| METRIC=IDENTITY | Yes | COEF=IDENTITY |
| METRIC=DIAGONAL | Yes | COEF=DIAGONAL |
| METRIC=FULL | No | |
| TRANSFRM=SCALE | Yes | LEVEL=RATIO |
| TRANSFRM=POWER | Yes | LEVEL=LOGINTERVAL |
| TRANSFRM=SPLINE | No | |
| STVARNCE= | No | |
| SUVARNCE= | No | |
| NORMAL | No | Default (FIT=DISTANCE) |
| ITMAX= | Yes | MAXITER= |
| ITXMAX= | No | |
| ITWMAX= | No | |
| ITAMAX= | No | |
| ITPMAX= | No | |
| CONV= | (Yes) | Meaning is different |
| FACTOR= | No | |
| HISTORY | No | PITER |
| ASYMP | No | |
| OUTCON | No | OUT= |
| OUTDIS | No | |
| OUTMET | No | OUT= |
| OUTSPL | No | |
| OUTRES | (Yes) | OUTRES= data set |
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.