|
Chapter Contents |
Previous |
Next |
| The VARIOGRAM Procedure |
Using the values of LAGDISTANCE=7.0 and MAXLAGS=10 computed previously, rerun PROC VARIOGRAM without the NOVARIOGRAM option. Also, request a robust version of the semivariogram; then, plot both results against the pairwise distance of each class.
proc variogram data=thick outv=outv;
compute lagd=7 maxlag=10 robust;
coordinates xc=east yc=north;
var thick;
run;
title 'OUTVAR= Data Set Showing Sample Variogram Results';
proc print data=outv label;
var lag count distance variog rvario;
run;
data outv2; set outv;
vari=variog; type = 'regular'; output;
vari=rvario; type = 'robust'; output;
run;
title 'Standard and Robust Semivariogram for Coal Seam
Thickness Data';
proc gplot data=outv2;
plot vari*distance=type / frame cframe=ligr vaxis=axis2
haxis=axis1;
symbol1 i=join l=1 c=blue /* v=star */;
symbol2 i=join l=1 c=yellow /* v=square */;
axis1 minor=none
label=(c=black 'Lag Distance') /* offset=(3,3) */;
axis2 order=(0 to 9 by 1) minor=none
label=(angle=90 rotate=0 c=black 'Variogram')
/* offset=(3,3) */;
run;
|
Figure 70.8 shows first a slow, then a rapid rise from the origin, suggesting a Gaussian type form:
![\gamma_z(h)=c_0[1-\exp(-\frac{h^2}{a_0^2})]](images/vrmeq7.gif)
See the section "Theoretical and Computational Details of the Semivariogram" for graphs of the standard semivariogram forms.
By experimentation, you find that a scale of c0=7.5 and a range of a0=30 fits reasonably well for both the robust and standard semivariogram
The following statements plot the sample and theoretical variograms:
data outv3; set outv;
c0=7.5; a0=30;
vari = c0*(1-exp(-distance*distance/(a0*a0)));
type = 'Gaussian'; output;
vari = variog; type = 'regular'; output;
vari = rvario; type = 'robust'; output;
run;
title 'Theoretical and Sample Semivariogram for Coal Seam
Thickness Data';
proc gplot data=outv3;
plot vari*distance=type / frame cframe=ligr vaxis=axis2
haxis=axis1;
symbol1 i=join l=1 c=blue /* v=star */;
symbol2 i=join l=1 c=yellow /* v=square */;
symbol3 i=join l=1 c=cyan /* v=diamond */;
axis1 minor=none
label=(c=black 'Lag Distance') /* offset=(3,3) */;
axis2 order=(0 to 9 by 1) minor=none
label=(angle=90 rotate=0 c=black 'Variogram')
/* offset=(3,3) */;
run;
|
Figure 70.9 shows that the choice of a semivariogram model is adequate. You can use this Gaussian form and these particular parameters in PROC KRIGE2D to produce a contour plot of the kriging estimates and the associated standard errors.
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.