|
Chapter Contents |
Previous |
Next |
| The MODEL Procedure |
This example shows the estimation of a two-variable vector AR(1) error process for the Grunfeld model (Grunfeld 1960) using the %AR macro. First, the full model is estimated. Second, the model is estimated with the restriction that the errors are univariate AR(1) instead of a vector process. The following produces Output 14.3.1 and Output 14.3.2.
data grunfeld;
input year gei gef gec whi whf whc;
label gei = 'Gross Investment GE'
gec = 'Capital Stock Lagged GE'
gef = 'Value of Outstanding Shares GE Lagged'
whi = 'Gross Investment WH'
whc = 'Capital Stock Lagged WH'
whf = 'Value of Outstanding Shares Lagged WH';
datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4
1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;
title1 'Example of Vector AR(1) Error Process Using Grunfeld''s Model';
/* Note: GE stands for General Electric and WH for Westinghouse */
proc model outmodel=grunmod;
var gei whi gef gec whf whc;
parms ge_int ge_f ge_c wh_int wh_f wh_c;
label ge_int = 'GE Intercept'
ge_f = 'GE Lagged Share Value Coef'
ge_c = 'GE Lagged Capital Stock Coef'
wh_int = 'WH Intercept'
wh_f = 'WH Lagged Share Value Coef'
wh_c = 'WH Lagged Capital Stock Coef';
gei = ge_int + ge_f * gef + ge_c * gec;
whi = wh_int + wh_f * whf + wh_c * whc;
run;
The preceding PROC MODEL step defines the structural model and stores
it in the model file named GRUNMOD.
The following PROC MODEL step reads in the model, adds the vector autoregressive terms using %AR, and requests SUR estimation using the FIT statement.
title2 'With Unrestricted Vector AR(1) Error Process';
proc model data=grunfeld model=grunmod;
%ar( ar, 1, gei whi )
fit gei whi / sur;
run;
The final PROC MODEL step estimates the restricted model.
title2 'With restricted AR(1) Error Process';
proc model data=grunfeld model=grunmod;
%ar( gei, 1 )
%ar( whi, 1)
fit gei whi / sur;
run;
Output 14.3.1: Results for the Unrestricted Model (Partial Output)|
| ||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.