Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The TSCSREG Procedure

Parks Method (Autoregressive Model)

Parks (1967) considered the first-order autoregressive model in which the random errors uit , i = 1, 2, ... , N, t = 1, 2, ... , T, have the structure

E( u^2_{it})&=&{\sigma}_{ii}
\hspace*{1.5in}\rm{(heteroscedasticity)} \cr
E(u_...
 ... {\rho}_{i} u_{i,t-1}+
 {\epsilon}_{it}
\hspace*{0.9in}\rm{(autoregression)}
where
E( {\epsilon}_{it})&=&0 \cr
E( u_{i,t-1} {\epsilon}_{jt})&=&0 \cr
E( {\epsilon...
 ...r
E( u_{i0} u_{j0})&=& {\sigma}_{ij}={\phi}_{ij}/(1- {\rho}_{i}
 {\rho}_{j})

The model assumed is first-order autoregressive with contemporaneous correlation between cross sections. In this model, the covariance matrix for the vector of random errors u can be expressed as

E( {uu}^{'})=V=
[\matrix{
{\sigma}_{11}P_{11} & {\sigma}_{12}P_{12}
& { ... }...
 ...ma}_{N1}P_{N1} & {\sigma}_{N2}P_{N2} & { ... } & {\sigma}_{NN}P_{NN} \cr
} 
]

where

P_{ij}=
[\matrix{
1 & {\rho}_{j} & {\rho}_{j}^2 & { ... } & {\rho}^{T-1}_{j} \...
 ...{\rho}^{T-1}_{i} & {\rho}^{T-2}_{i} & {\rho}^{T-3}_{i} & { ... } & 1 \cr
} 
]

The matrix V is estimated by a two-stage procedure, and {\beta} is then estimated by generalized least squares. The first step in estimating V involves the use of ordinary least squares to estimate {\beta} and obtain the fitted residuals, as follows:

\hat{u}=y-X\hat{\beta}_{OLS}

A consistent estimator of the first-order autoregressive parameter is then obtained in the usual manner, as follows:

\hat{\rho}_{i}=
(\sum_{t=2}^T \hat{u}_{it}
 \hat{u}_{i,t-1}) \bigg/ (\sum_{t=2}^T{\hat{u}^2_{i,t-1}})
\hspace*{1em} i=1, 2, { ... }, N

Finally, the autoregressive characteristic of the data can be removed (asymptotically) by the usual transformation of taking weighted differences. That is, for i = 1,2, ... ,N,

y_{i1}\sqrt{1- \hat{\rho}^2_{i}}=
\sum_{k=1}^p{X_{i1k}{{\beta}}_{k}}
\sqrt{1- \hat{\rho}^2_{i}}
+u_{i1}\sqrt{1- \hat{\rho}^2_{i}}

y_{it}- \hat{\rho}_{i} y_{i,t-1}
=\sum_{k=1}^p{( X_{itk}-
 \hat{\rho}_{i}
 X_...
 ...}) {\beta}_{k}}
+ u_{it}- \hat{\rho}_{i} u_{i,t-1}
\hspace*{1em}t=2,{ ... },T

which is written

y^{\ast}_{it}=
\sum_{k=1}^p{X^{\ast}_{itk}
{\beta}_{k}}+ u^{\ast}_{it}
\hspace*{1em} i=1, 2, { ... }, N;
\hspace*{1em} t=1, 2, { ... }, T

Notice that the transformed model has not lost any observations (Seely and Zyskind 1971).

The second step in estimating the covariance matrix V is to apply ordinary least squares to the preceding transformed model, obtaining

\hat{u}^{\ast}=
 y^{\ast}- X^{\ast}
 {{\beta}}^{\ast}_{OLS}

from which the consistent estimator of {\sigma}ij is calculated:

s_{ij}=\frac{\hat{\phi}_{ij}}{(1- 
 \hat{\rho}_{i}
 \hat{\rho}_{j}) }

where

\hat{\phi}_{ij}=\frac{1}{(T-p)}
\sum_{t=1}^T \hat{u}^{\ast}_{it}
 \hat{u}^{\ast}_{jt}

EGLS then proceeds in the usual manner,

\hat{\beta}_{P}=
({X'}\hat{V}^{-1}X)^{-1}
{X'}\hat{V}^{-1}y

where \hat{V} is the derived consistent estimator of V. For computational purposes, it should be pointed out that {\hat{\beta}_{P}} is obtained directly from the transformed model,

\hat{\beta}_{P}=
({X^{\ast'}}(\hat{\Phi}^{-1}{\otimes}I_{T})
X^{\ast})^{-1}{X^{\ast'}}
(\hat{\Phi}^{-1}{\otimes}I_{T}) y^{\ast}

where {\hat{\Phi}= [\hat{\phi}_{ij}]_{i,j=1,{ ... },N} }.

The preceding procedure is equivalent to Zellner's two-stage methodology applied to the transformed model (Zellner 1962). Parks demonstrates that his estimator is consistent and asymptotically, normally distributed with

\rm{Var}(\hat{\beta}_{P})=
({X'}V^{-1}X)^{-1}

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let {\rho} be the N*1 vector of true parameters and R = (r1, ... ,rN)' be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC TSCSREG, the following modification for R is made:

r_{i} = \cases{
 r_{i} &\hspace*{1em}\rm{if} {| r_{i}|}\lt 1\space \cr
 max(.9...
 ...}1\space \cr
 min(-.95, rmin) &\hspace*{1em}\rm{if} r_{i}{\le}-1\space \cr
 }

where

rmax = \cases{
 0 & \hspace*{1em}\rm{if} r_{i} \lt 0\space \rm{or} r_{i}{\ge}1
...
 ...s_{j}
 [ r_{j} : 0 {\le} r_{j} \lt 1 ]
 & \hspace*{1em}\rm{otherwise} \cr
 }

and

rmin = \cases{
 0 & \hspace*{1em}\rm{if} r_{i} \gt 0\space \rm{or} r_{i}{\le}-1...
 ...s_{j}
 [ r_{j} : -1 \lt r_{j} {\le} 0 ]
 &\hspace*{1em}\rm{otherwise} \cr
 }

Whenever this correction is made, a warning message is printed.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.