Example 7.1: Simulated IMA Model
This example illustrates the ARIMA procedure results for a case where
the true model is known.
An integrated moving average model is used for this illustration.
The following DATA step generates a pseudo-random sample of 100 periods
from the ARIMA(0,1,1) process
ut = ut-1 + at - .8at-1,
at iid N(0,1).
title1 'Simulated IMA(1,1) Series';
data a;
u1 = 0.9; a1 = 0;
do i = -50 to 100;
a = rannor( 32565 );
u = u1 + a - .8 * a1;
if i > 0 then output;
a1 = a;
u1 = u;
end;
run;
The following ARIMA procedure statements identify and estimate the model.
proc arima data=a;
identify var=u nlag=15;
run;
identify var=u(1) nlag=15;
run;
estimate q=1 ;
run;
quit;
The results of the first IDENTIFY statement are shown in
Output 7.1.1.
The output shows the behavior of the sample autocorrelation function
when the process is nonstationary.
Note that in this case the estimated autocorrelations are not very high,
even at small lags.
Nonstationarity is reflected in a pattern of significant autocorrelations
that do not decline quickly with increasing lag,
not in the size of the autocorrelations.
Output 7.1.1: Output from the First IDENTIFY Statement
|
| Simulated IMA(1,1) Series |
| Name of Variable = u |
| Mean of Working Series |
0.099637 |
| Standard Deviation |
1.115604 |
| Number of Observations |
100 |
| Autocorrelations |
| Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
Std Error |
| 0 |
1.244572 |
1.00000 |
| |********************|
|
0 |
| 1 |
0.547457 |
0.43988 |
| . |********* |
|
0.100000 |
| 2 |
0.534787 |
0.42970 |
| . |********* |
|
0.117770 |
| 3 |
0.569849 |
0.45787 |
| . |********* |
|
0.132524 |
| 4 |
0.384428 |
0.30888 |
| . |****** |
|
0.147497 |
| 5 |
0.405137 |
0.32552 |
| . |******* |
|
0.153830 |
| 6 |
0.253617 |
0.20378 |
| . |**** . |
|
0.160571 |
| 7 |
0.321830 |
0.25859 |
| . |***** . |
|
0.163136 |
| 8 |
0.363871 |
0.29237 |
| . |******. |
|
0.167185 |
| 9 |
0.271180 |
0.21789 |
| . |**** . |
|
0.172222 |
| 10 |
0.419208 |
0.33683 |
| . |******* |
|
0.174957 |
| 11 |
0.298127 |
0.23954 |
| . |***** . |
|
0.181326 |
| 12 |
0.186460 |
0.14982 |
| . |*** . |
|
0.184463 |
| 13 |
0.313270 |
0.25171 |
| . |***** . |
|
0.185676 |
| 14 |
0.314594 |
0.25277 |
| . |***** . |
|
0.189057 |
| 15 |
0.156329 |
0.12561 |
| . |*** . |
|
0.192407 |
| "." marks two standard errors |
|
|
| Inverse Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
-0.12382 |
| . **| . |
|
| 2 |
-0.17396 |
| .***| . |
|
| 3 |
-0.19966 |
| ****| . |
|
| 4 |
-0.01476 |
| . | . |
|
| 5 |
-0.02895 |
| . *| . |
|
| 6 |
0.20612 |
| . |**** |
|
| 7 |
0.01258 |
| . | . |
|
| 8 |
-0.09616 |
| . **| . |
|
| 9 |
0.00025 |
| . | . |
|
| 10 |
-0.16879 |
| .***| . |
|
| 11 |
0.05680 |
| . |* . |
|
| 12 |
0.14306 |
| . |***. |
|
| 13 |
-0.02466 |
| . | . |
|
| 14 |
-0.15549 |
| .***| . |
|
| 15 |
0.08247 |
| . |** . |
|
| Partial Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
0.43988 |
| . |********* |
|
| 2 |
0.29287 |
| . |****** |
|
| 3 |
0.26499 |
| . |***** |
|
| 4 |
-0.00728 |
| . | . |
|
| 5 |
0.06473 |
| . |* . |
|
| 6 |
-0.09926 |
| . **| . |
|
| 7 |
0.10048 |
| . |** . |
|
| 8 |
0.12872 |
| . |***. |
|
| 9 |
0.03286 |
| . |* . |
|
| 10 |
0.16034 |
| . |***. |
|
| 11 |
-0.03794 |
| . *| . |
|
| 12 |
-0.14469 |
| .***| . |
|
| 13 |
0.06415 |
| . |* . |
|
| 14 |
0.15482 |
| . |***. |
|
| 15 |
-0.10989 |
| . **| . |
|
|
|
| Autocorrelation Check for White Noise |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
87.22 |
6 |
<.0001 |
0.440 |
0.430 |
0.458 |
0.309 |
0.326 |
0.204 |
| 12 |
131.39 |
12 |
<.0001 |
0.259 |
0.292 |
0.218 |
0.337 |
0.240 |
0.150 |
|
The second IDENTIFY statement differences the series.
The results of the second IDENTIFY statement are shown in
Output 7.1.2.
This output shows autocorrelation, inverse autocorrelation,
and partial autocorrelation functions typical of MA(1) processes.
Output 7.1.2: Output from the Second IDENTIFY Statement
|
| Name of Variable = u |
| Period(s) of Differencing |
1 |
| Mean of Working Series |
0.019752 |
| Standard Deviation |
1.160921 |
| Number of Observations |
99 |
| Observation(s) eliminated by differencing |
1 |
| Autocorrelations |
| Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
Std Error |
| 0 |
1.347737 |
1.00000 |
| |********************|
|
0 |
| 1 |
-0.699404 |
-.51895 |
| **********| . |
|
0.100504 |
| 2 |
-0.036142 |
-.02682 |
| . *| . |
|
0.124666 |
| 3 |
0.245093 |
0.18186 |
| . |****. |
|
0.124724 |
| 4 |
-0.234167 |
-.17375 |
| . ***| . |
|
0.127374 |
| 5 |
0.181778 |
0.13488 |
| . |*** . |
|
0.129746 |
| 6 |
-0.184601 |
-.13697 |
| . ***| . |
|
0.131155 |
| 7 |
0.0088659 |
0.00658 |
| . | . |
|
0.132592 |
| 8 |
0.146372 |
0.10861 |
| . |** . |
|
0.132595 |
| 9 |
-0.241579 |
-.17925 |
| .****| . |
|
0.133490 |
| 10 |
0.240512 |
0.17846 |
| . |****. |
|
0.135900 |
| 11 |
0.031005 |
0.02301 |
| . | . |
|
0.138247 |
| 12 |
-0.250954 |
-.18620 |
| . ****| . |
|
0.138285 |
| 13 |
0.095295 |
0.07071 |
| . |* . |
|
0.140795 |
| 14 |
0.194110 |
0.14403 |
| . |*** . |
|
0.141153 |
| 15 |
-0.219688 |
-.16300 |
| . ***| . |
|
0.142630 |
| "." marks two standard errors |
|
|
| Inverse Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
0.72538 |
| . |*************** |
|
| 2 |
0.48987 |
| . |********** |
|
| 3 |
0.35415 |
| . |******* |
|
| 4 |
0.34169 |
| . |******* |
|
| 5 |
0.33466 |
| . |******* |
|
| 6 |
0.34003 |
| . |******* |
|
| 7 |
0.24192 |
| . |***** |
|
| 8 |
0.12899 |
| . |***. |
|
| 9 |
0.06597 |
| . |* . |
|
| 10 |
0.01654 |
| . | . |
|
| 11 |
0.06434 |
| . |* . |
|
| 12 |
0.08659 |
| . |** . |
|
| 13 |
0.02485 |
| . | . |
|
| 14 |
-0.03545 |
| . *| . |
|
| 15 |
-0.00113 |
| . | . |
|
| Partial Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
-0.51895 |
| **********| . |
|
| 2 |
-0.40526 |
| ********| . |
|
| 3 |
-0.07862 |
| . **| . |
|
| 4 |
-0.14588 |
| .***| . |
|
| 5 |
0.02735 |
| . |* . |
|
| 6 |
-0.13782 |
| .***| . |
|
| 7 |
-0.16741 |
| .***| . |
|
| 8 |
-0.06041 |
| . *| . |
|
| 9 |
-0.18372 |
| ****| . |
|
| 10 |
-0.01478 |
| . | . |
|
| 11 |
0.14277 |
| . |***. |
|
| 12 |
-0.04345 |
| . *| . |
|
| 13 |
-0.19959 |
| ****| . |
|
| 14 |
0.08302 |
| . |** . |
|
| 15 |
0.00278 |
| . | . |
|
|
|
| Autocorrelation Check for White Noise |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
38.13 |
6 |
<.0001 |
-0.519 |
-0.027 |
0.182 |
-0.174 |
0.135 |
-0.137 |
| 12 |
50.62 |
12 |
<.0001 |
0.007 |
0.109 |
-0.179 |
0.178 |
0.023 |
-0.186 |
|
The ESTIMATE statement fits an ARIMA(0,1,1) model to the simulated data.
Note that in this case the parameter estimates are
reasonably close to the values used to generate the simulated data.
(
)The ESTIMATE statement results are shown in Output 7.1.3.
Output 7.1.3: Output from Fitting ARIMA(0,1,1) Model
|
| Conditional Least Squares Estimation |
| Parameter |
Estimate |
Approx Std Error |
t Value |
Pr > |t| |
Lag |
| MU |
0.02056 |
0.01972 |
1.04 |
0.2997 |
0 |
| MA1,1 |
0.79142 |
0.06474 |
12.22 |
<.0001 |
1 |
| Constant Estimate |
0.020558 |
| Variance Estimate |
0.819807 |
| Std Error Estimate |
0.905432 |
| AIC |
263.2594 |
| SBC |
268.4497 |
| Number of Residuals |
99 |
| * AIC and SBC do not include log determinant. |
| Correlations of Parameter Estimates |
| Parameter |
MU |
MA1,1 |
| MU |
1.000 |
-0.124 |
| MA1,1 |
-0.124 |
1.000 |
| Autocorrelation Check of Residuals |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
6.48 |
5 |
0.2623 |
-0.033 |
0.030 |
0.153 |
-0.096 |
0.013 |
-0.163 |
| 12 |
13.11 |
11 |
0.2862 |
-0.048 |
0.046 |
-0.086 |
0.159 |
0.027 |
-0.145 |
| 18 |
20.12 |
17 |
0.2680 |
0.069 |
0.130 |
-0.099 |
0.006 |
0.164 |
-0.013 |
| 24 |
24.73 |
23 |
0.3645 |
0.064 |
0.032 |
0.076 |
-0.077 |
-0.075 |
0.114 |
| Model for variable u |
| Estimated Mean |
0.020558 |
| Period(s) of Differencing |
1 |
| Moving Average Factors |
| Factor 1: |
1 - 0.79142 B**(1) |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.