Example 7.3: Model for Series J Data from Box and Jenkins
This example uses the Series J data from Box and Jenkins (1976).
First the input series, X, is modeled with a univariate ARMA model.
Next, the dependent series, Y, is cross correlated with the input series.
Since a model has been fit to X, both Y and X are
prewhitened by this model before the sample cross correlations are computed.
Next, a transfer function model is fit with no structure on the noise term.
The residuals from this model are identified by means
of the PLOT option; then, the full model, transfer function and noise is
fit to the data.
The following statements read Input Gas Rate and Output CO2
from a gas furnace.
(Data values are not shown.
See "Series J" in Box and Jenkins (1976) for the values.)
title1 'Gas Furnace Data';
title2 '(Box and Jenkins, Series J)';
data seriesj;
input x y @@;
label x = 'Input Gas Rate'
y = 'Output CO2';
datalines;
;
The following statements produce Output 7.3.1 through
Output 7.3.5.
proc arima data=seriesj;
/*--- Look at the input process -------------------*/
identify var=x nlag=10;
run;
/*--- Fit a model for the input -------------------*/
estimate p=3;
run;
/*--- Crosscorrelation of prewhitened series ------*/
identify var=y crosscorr=(x) nlag=10;
run;
/*--- Fit transfer function - look at residuals ---*/
estimate input=( 3 $ (1,2)/(1,2) x ) plot;
run;
/*--- Estimate full model -------------------------*/
estimate p=2 input=( 3 $ (1,2)/(1) x );
run;
quit;
The results of the first IDENTIFY statement for the
input series X are shown in Output 7.3.1.
Output 7.3.1: IDENTIFY Statement Results for X
|
| Gas Furnace Data |
| (Box and Jenkins, Series J) |
| Name of Variable = x |
| Mean of Working Series |
-0.05683 |
| Standard Deviation |
1.070952 |
| Number of Observations |
296 |
| Autocorrelations |
| Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
Std Error |
| 0 |
1.146938 |
1.00000 |
| |********************|
|
0 |
| 1 |
1.092430 |
0.95247 |
| . |******************* |
|
0.058124 |
| 2 |
0.956652 |
0.83409 |
| . |***************** |
|
0.097510 |
| 3 |
0.782051 |
0.68186 |
| . |************** |
|
0.119201 |
| 4 |
0.609291 |
0.53123 |
| . |*********** |
|
0.131721 |
| 5 |
0.467380 |
0.40750 |
| . |******** |
|
0.138770 |
| 6 |
0.364957 |
0.31820 |
| . |****** |
|
0.142756 |
| 7 |
0.298427 |
0.26019 |
| . |*****. |
|
0.145132 |
| 8 |
0.260943 |
0.22751 |
| . |*****. |
|
0.146699 |
| 9 |
0.244378 |
0.21307 |
| . |**** . |
|
0.147887 |
| 10 |
0.238942 |
0.20833 |
| . |**** . |
|
0.148920 |
| "." marks two standard errors |
| Inverse Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
-0.71090 |
| **************| . |
|
| 2 |
0.26217 |
| . |***** |
|
| 3 |
-0.13005 |
| ***| . |
|
| 4 |
0.14777 |
| . |*** |
|
| 5 |
-0.06803 |
| .*| . |
|
| 6 |
-0.01147 |
| . | . |
|
| 7 |
-0.01649 |
| . | . |
|
| 8 |
0.06108 |
| . |*. |
|
| 9 |
-0.04490 |
| .*| . |
|
| 10 |
0.01100 |
| . | . |
|
|
|
| Partial Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
0.95247 |
| . |******************* |
|
| 2 |
-0.78796 |
| ****************| . |
|
| 3 |
0.33897 |
| . |******* |
|
| 4 |
0.12121 |
| . |** |
|
| 5 |
0.05896 |
| . |*. |
|
| 6 |
-0.11147 |
| **| . |
|
| 7 |
0.04862 |
| . |*. |
|
| 8 |
0.09945 |
| . |** |
|
| 9 |
0.01587 |
| . | . |
|
| 10 |
-0.06973 |
| .*| . |
|
| Autocorrelation Check for White Noise |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
786.35 |
6 |
<.0001 |
0.952 |
0.834 |
0.682 |
0.531 |
0.408 |
0.318 |
|
The ESTIMATE statement results for the AR(3) model for
the input series X are shown in Output 7.3.2.
Output 7.3.2: Estimates of the AR(3) Model for X
|
| Conditional Least Squares Estimation |
| Parameter |
Estimate |
Approx Std Error |
t Value |
Pr > |t| |
Lag |
| MU |
-0.12280 |
0.10902 |
-1.13 |
0.2609 |
0 |
| AR1,1 |
1.97607 |
0.05499 |
35.94 |
<.0001 |
1 |
| AR1,2 |
-1.37499 |
0.09967 |
-13.80 |
<.0001 |
2 |
| AR1,3 |
0.34336 |
0.05502 |
6.24 |
<.0001 |
3 |
| Constant Estimate |
-0.00682 |
| Variance Estimate |
0.035797 |
| Std Error Estimate |
0.1892 |
| AIC |
-141.667 |
| SBC |
-126.906 |
| Number of Residuals |
296 |
| * AIC and SBC do not include log determinant. |
| Correlations of Parameter Estimates |
| Parameter |
MU |
AR1,1 |
AR1,2 |
AR1,3 |
| MU |
1.000 |
-0.017 |
0.014 |
-0.016 |
| AR1,1 |
-0.017 |
1.000 |
-0.941 |
0.790 |
| AR1,2 |
0.014 |
-0.941 |
1.000 |
-0.941 |
| AR1,3 |
-0.016 |
0.790 |
-0.941 |
1.000 |
| Autocorrelation Check of Residuals |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
10.30 |
3 |
0.0162 |
-0.042 |
0.068 |
0.056 |
-0.145 |
-0.009 |
0.059 |
| 12 |
19.89 |
9 |
0.0186 |
0.014 |
0.002 |
-0.055 |
0.035 |
0.143 |
-0.079 |
| 18 |
27.92 |
15 |
0.0221 |
0.099 |
0.043 |
-0.082 |
0.017 |
0.066 |
-0.052 |
| 24 |
31.05 |
21 |
0.0729 |
-0.078 |
0.024 |
0.015 |
0.030 |
0.045 |
0.004 |
| 30 |
34.58 |
27 |
0.1499 |
-0.007 |
-0.004 |
0.073 |
-0.038 |
-0.062 |
0.003 |
| 36 |
38.84 |
33 |
0.2231 |
0.010 |
0.002 |
0.082 |
0.045 |
0.056 |
-0.023 |
| 42 |
41.18 |
39 |
0.3753 |
0.002 |
0.033 |
-0.061 |
-0.003 |
-0.006 |
-0.043 |
| 48 |
42.73 |
45 |
0.5687 |
0.018 |
0.051 |
-0.012 |
0.015 |
-0.027 |
0.020 |
|
|
| Model for variable x |
| Estimated Mean |
-0.1228 |
| Autoregressive Factors |
| Factor 1: |
1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3) |
|
The IDENTIFY statement results for the dependent series Y
cross correlated with the input series X is shown in Output 7.3.3.
Since a model has been fit to X, both Y and X are
prewhitened by this model before the sample cross correlations are computed.
Output 7.3.3: IDENTIFY Statement for Y Cross Correlated with X
|
| Partial Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
0.97076 |
| . |******************* |
|
| 2 |
-0.80388 |
| ****************| . |
|
| 3 |
0.18833 |
| . |**** |
|
| 4 |
0.25999 |
| . |***** |
|
| 5 |
0.05949 |
| . |*. |
|
| 6 |
-0.06258 |
| .*| . |
|
| 7 |
-0.01435 |
| . | . |
|
| 8 |
0.05490 |
| . |*. |
|
| 9 |
0.00545 |
| . | . |
|
| 10 |
0.03141 |
| . |*. |
|
| Autocorrelation Check for White Noise |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
1023.15 |
6 |
<.0001 |
0.971 |
0.896 |
0.793 |
0.680 |
0.574 |
0.485 |
|
|
| Correlation of y and x |
| Number of Observations |
296 |
| Variance of transformed series y |
0.131438 |
| Variance of transformed series x |
0.035357 |
| Both series have been prewhitened. |
| Crosscorrelations |
| Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| -10 |
0.0015683 |
0.02301 |
| . | . |
|
| -9 |
0.00013502 |
0.00198 |
| . | . |
|
| -8 |
-0.0060480 |
-.08872 |
| **| . |
|
| -7 |
-0.0017624 |
-.02585 |
| .*| . |
|
| -6 |
-0.0080539 |
-.11814 |
| **| . |
|
| -5 |
-0.0000944 |
-.00138 |
| . | . |
|
| -4 |
-0.0012802 |
-.01878 |
| . | . |
|
| -3 |
-0.0031078 |
-.04559 |
| .*| . |
|
| -2 |
0.00065212 |
0.00957 |
| . | . |
|
| -1 |
-0.0019166 |
-.02811 |
| .*| . |
|
| 0 |
-0.0003673 |
-.00539 |
| . | . |
|
| 1 |
0.0038939 |
0.05712 |
| . |*. |
|
| 2 |
-0.0016971 |
-.02489 |
| . | . |
|
| 3 |
-0.019231 |
-.28210 |
| ******| . |
|
| 4 |
-0.022479 |
-.32974 |
| *******| . |
|
| 5 |
-0.030909 |
-.45341 |
| *********| . |
|
| 6 |
-0.018122 |
-.26583 |
| *****| . |
|
| 7 |
-0.011426 |
-.16761 |
| ***| . |
|
| 8 |
-0.0017355 |
-.02546 |
| .*| . |
|
| 9 |
0.0022590 |
0.03314 |
| . |*. |
|
| 10 |
-0.0035152 |
-.05156 |
| .*| . |
|
| "." marks two standard errors |
| Crosscorrelation Check Between Series |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Crosscorrelations |
| 5 |
117.75 |
6 |
<.0001 |
-0.005 |
0.057 |
-0.025 |
-0.282 |
-0.330 |
-0.453 |
|
|
| Both variables have been prewhitened by the following filter: |
| Autoregressive Factors |
| Factor 1: |
1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3) |
|
The ESTIMATE statement results for the transfer function model
with no structure on the noise term is shown in Output 7.3.4.
The PLOT option prints the residual autocorrelation functions
from this model.
Output 7.3.4: Estimates of the Transfer Function Model
|
| Conditional Least Squares Estimation |
| Parameter |
Estimate |
Approx Std Error |
t Value |
Pr > |t| |
Lag |
Variable |
Shift |
| MU |
53.32237 |
0.04932 |
1081.24 |
<.0001 |
0 |
y |
0 |
| NUM1 |
-0.62868 |
0.25385 |
-2.48 |
0.0138 |
0 |
x |
3 |
| NUM1,1 |
0.47258 |
0.62253 |
0.76 |
0.4484 |
1 |
x |
3 |
| NUM1,2 |
0.73660 |
0.81006 |
0.91 |
0.3640 |
2 |
x |
3 |
| DEN1,1 |
0.15411 |
0.90483 |
0.17 |
0.8649 |
1 |
x |
3 |
| DEN1,2 |
0.27774 |
0.57345 |
0.48 |
0.6285 |
2 |
x |
3 |
| Constant Estimate |
53.32237 |
| Variance Estimate |
0.704241 |
| Std Error Estimate |
0.839191 |
| AIC |
729.7249 |
| SBC |
751.7648 |
| Number of Residuals |
291 |
| * AIC and SBC do not include log determinant. |
| Correlations of Parameter Estimates |
| Variable Parameter |
y MU |
x NUM1 |
x NUM1,1 |
x NUM1,2 |
x DEN1,1 |
x DEN1,2 |
| y MU |
1.000 |
0.013 |
0.002 |
-0.002 |
0.004 |
-0.006 |
| x NUM1 |
0.013 |
1.000 |
0.755 |
-0.447 |
0.089 |
-0.065 |
| x NUM1,1 |
0.002 |
0.755 |
1.000 |
0.121 |
-0.538 |
0.565 |
| x NUM1,2 |
-0.002 |
-0.447 |
0.121 |
1.000 |
-0.892 |
0.870 |
| x DEN1,1 |
0.004 |
0.089 |
-0.538 |
-0.892 |
1.000 |
-0.998 |
| x DEN1,2 |
-0.006 |
-0.065 |
0.565 |
0.870 |
-0.998 |
1.000 |
|
|
| Autocorrelation Check of Residuals |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
496.45 |
6 |
<.0001 |
0.893 |
0.711 |
0.502 |
0.312 |
0.167 |
0.064 |
| 12 |
498.58 |
12 |
<.0001 |
-0.003 |
-0.040 |
-0.054 |
-0.040 |
-0.022 |
-0.021 |
| 18 |
539.38 |
18 |
<.0001 |
-0.045 |
-0.083 |
-0.131 |
-0.170 |
-0.196 |
-0.195 |
| 24 |
561.87 |
24 |
<.0001 |
-0.163 |
-0.102 |
-0.026 |
0.047 |
0.106 |
0.142 |
| 30 |
585.90 |
30 |
<.0001 |
0.158 |
0.156 |
0.131 |
0.081 |
0.013 |
-0.037 |
| 36 |
592.42 |
36 |
<.0001 |
-0.048 |
-0.018 |
0.038 |
0.070 |
0.079 |
0.067 |
| 42 |
593.44 |
42 |
<.0001 |
0.042 |
0.025 |
0.013 |
0.004 |
0.006 |
0.019 |
| 48 |
601.94 |
48 |
<.0001 |
0.043 |
0.068 |
0.084 |
0.082 |
0.061 |
0.023 |
|
|
| Autocorrelation Plot of Residuals |
| Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
Std Error |
| 0 |
0.704241 |
1.00000 |
| |********************|
|
0 |
| 1 |
0.628846 |
0.89294 |
| . |****************** |
|
0.058621 |
| 2 |
0.500490 |
0.71068 |
| . |************** |
|
0.094427 |
| 3 |
0.353404 |
0.50182 |
| . |********** |
|
0.111300 |
| 4 |
0.219895 |
0.31224 |
| . |****** |
|
0.118821 |
| 5 |
0.117330 |
0.16660 |
| . |*** . |
|
0.121608 |
| 6 |
0.044967 |
0.06385 |
| . |* . |
|
0.122390 |
| 7 |
-0.0023551 |
-.00334 |
| . | . |
|
0.122504 |
| 8 |
-0.028030 |
-.03980 |
| . *| . |
|
0.122505 |
| 9 |
-0.037891 |
-.05380 |
| . *| . |
|
0.122549 |
| 10 |
-0.028378 |
-.04030 |
| . *| . |
|
0.122630 |
| "." marks two standard errors |
| Inverse Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
-0.57346 |
| ***********| . |
|
| 2 |
0.02264 |
| . | . |
|
| 3 |
0.03631 |
| . |*. |
|
| 4 |
0.03941 |
| . |*. |
|
| 5 |
-0.01256 |
| . | . |
|
| 6 |
-0.01618 |
| . | . |
|
| 7 |
0.02680 |
| . |*. |
|
| 8 |
-0.05895 |
| .*| . |
|
| 9 |
0.07043 |
| . |*. |
|
| 10 |
-0.02987 |
| .*| . |
|
|
|
| Partial Autocorrelations |
| Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
| 1 |
0.89294 |
| . |****************** |
|
| 2 |
-0.42765 |
| *********| . |
|
| 3 |
-0.13463 |
| ***| . |
|
| 4 |
0.02199 |
| . | . |
|
| 5 |
0.03891 |
| . |*. |
|
| 6 |
-0.02219 |
| . | . |
|
| 7 |
-0.02249 |
| . | . |
|
| 8 |
0.01538 |
| . | . |
|
| 9 |
0.00634 |
| . | . |
|
| 10 |
0.07737 |
| . |** |
|
| Crosscorrelation Check of Residuals with Input x |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Crosscorrelations |
| 5 |
0.48 |
2 |
0.7855 |
-0.009 |
-0.005 |
0.026 |
0.013 |
-0.017 |
-0.022 |
| 11 |
0.93 |
8 |
0.9986 |
-0.006 |
0.008 |
0.022 |
0.023 |
-0.017 |
-0.013 |
| 17 |
2.63 |
14 |
0.9996 |
0.012 |
0.035 |
0.037 |
0.039 |
-0.005 |
-0.040 |
| 23 |
19.19 |
20 |
0.5092 |
-0.076 |
-0.108 |
-0.122 |
-0.122 |
-0.094 |
-0.041 |
| 29 |
20.12 |
26 |
0.7857 |
-0.039 |
-0.013 |
0.010 |
-0.020 |
-0.031 |
-0.005 |
| 35 |
24.22 |
32 |
0.8363 |
-0.022 |
-0.031 |
-0.074 |
-0.036 |
0.014 |
0.076 |
| 41 |
30.66 |
38 |
0.7953 |
0.108 |
0.091 |
0.046 |
0.018 |
0.003 |
0.009 |
| 47 |
31.65 |
44 |
0.9180 |
0.008 |
-0.011 |
-0.040 |
-0.030 |
-0.002 |
0.028 |
| Model for variable y |
| Estimated Intercept |
53.32237 |
| Input Number 1 |
| Input Variable |
x |
| Shift |
3 |
| Numerator Factors |
| Factor 1: |
-0.6287 - 0.47258 B**(1) - 0.7366 B**(2) |
| Denominator Factors |
| Factor 1: |
1 - 0.15411 B**(1) - 0.27774 B**(2) |
|
The ESTIMATE statement results for the final
transfer function model with AR(2) noise are shown in Output 7.3.5.
Output 7.3.5: Estimates of the Final Model
|
| Conditional Least Squares Estimation |
| Parameter |
Estimate |
Approx Std Error |
t Value |
Pr > |t| |
Lag |
Variable |
Shift |
| MU |
53.26307 |
0.11926 |
446.63 |
<.0001 |
0 |
y |
0 |
| AR1,1 |
1.53292 |
0.04754 |
32.25 |
<.0001 |
1 |
y |
0 |
| AR1,2 |
-0.63297 |
0.05006 |
-12.64 |
<.0001 |
2 |
y |
0 |
| NUM1 |
-0.53522 |
0.07482 |
-7.15 |
<.0001 |
0 |
x |
3 |
| NUM1,1 |
0.37602 |
0.10287 |
3.66 |
0.0003 |
1 |
x |
3 |
| NUM1,2 |
0.51894 |
0.10783 |
4.81 |
<.0001 |
2 |
x |
3 |
| DEN1,1 |
0.54842 |
0.03822 |
14.35 |
<.0001 |
1 |
x |
3 |
| Constant Estimate |
5.329371 |
| Variance Estimate |
0.058828 |
| Std Error Estimate |
0.242544 |
| AIC |
8.292811 |
| SBC |
34.00607 |
| Number of Residuals |
291 |
| * AIC and SBC do not include log determinant. |
| Correlations of Parameter Estimates |
| Variable Parameter |
y MU |
y AR1,1 |
y AR1,2 |
x NUM1 |
x NUM1,1 |
x NUM1,2 |
x DEN1,1 |
| y MU |
1.000 |
-0.063 |
0.047 |
-0.008 |
-0.016 |
0.017 |
-0.049 |
| y AR1,1 |
-0.063 |
1.000 |
-0.927 |
-0.003 |
0.007 |
-0.002 |
0.015 |
| y AR1,2 |
0.047 |
-0.927 |
1.000 |
0.023 |
-0.005 |
0.005 |
-0.022 |
| x NUM1 |
-0.008 |
-0.003 |
0.023 |
1.000 |
0.713 |
-0.178 |
-0.013 |
| x NUM1,1 |
-0.016 |
0.007 |
-0.005 |
0.713 |
1.000 |
-0.467 |
-0.039 |
| x NUM1,2 |
0.017 |
-0.002 |
0.005 |
-0.178 |
-0.467 |
1.000 |
-0.720 |
| x DEN1,1 |
-0.049 |
0.015 |
-0.022 |
-0.013 |
-0.039 |
-0.720 |
1.000 |
|
|
| Autocorrelation Check of Residuals |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
| 6 |
8.61 |
4 |
0.0717 |
0.024 |
0.055 |
-0.073 |
-0.054 |
-0.054 |
0.119 |
| 12 |
15.43 |
10 |
0.1172 |
0.032 |
0.028 |
-0.081 |
0.047 |
0.022 |
0.107 |
| 18 |
21.13 |
16 |
0.1734 |
-0.038 |
0.052 |
-0.093 |
-0.013 |
-0.073 |
-0.005 |
| 24 |
27.52 |
22 |
0.1922 |
-0.118 |
-0.002 |
-0.007 |
0.076 |
0.024 |
-0.004 |
| 30 |
36.94 |
28 |
0.1202 |
0.034 |
-0.021 |
0.020 |
0.094 |
-0.118 |
0.065 |
| 36 |
44.26 |
34 |
0.1119 |
-0.025 |
-0.057 |
0.113 |
0.022 |
0.030 |
0.065 |
| 42 |
45.62 |
40 |
0.2500 |
-0.017 |
-0.036 |
-0.029 |
-0.013 |
-0.033 |
0.017 |
| 48 |
48.60 |
46 |
0.3689 |
0.024 |
0.069 |
0.024 |
0.017 |
0.022 |
-0.044 |
| Crosscorrelation Check of Residuals with Input x |
| To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Crosscorrelations |
| 5 |
0.93 |
3 |
0.8191 |
0.008 |
0.004 |
0.010 |
0.008 |
-0.045 |
0.030 |
| 11 |
6.60 |
9 |
0.6784 |
0.075 |
-0.024 |
-0.019 |
-0.026 |
-0.111 |
0.013 |
| 17 |
13.86 |
15 |
0.5365 |
0.050 |
0.043 |
0.014 |
0.014 |
-0.141 |
-0.028 |
| 23 |
18.55 |
21 |
0.6142 |
-0.074 |
-0.078 |
0.023 |
-0.016 |
0.021 |
0.060 |
| 29 |
27.99 |
27 |
0.4113 |
-0.071 |
-0.001 |
0.038 |
-0.156 |
0.031 |
0.035 |
| 35 |
35.18 |
33 |
0.3654 |
-0.014 |
0.015 |
-0.039 |
0.028 |
0.046 |
0.142 |
| 41 |
37.15 |
39 |
0.5544 |
0.031 |
-0.029 |
-0.070 |
-0.006 |
0.012 |
-0.004 |
| 47 |
42.42 |
45 |
0.5818 |
0.036 |
-0.038 |
-0.053 |
0.107 |
0.029 |
0.021 |
|
|
| Model for variable y |
| Estimated Intercept |
53.26307 |
| Autoregressive Factors |
| Factor 1: |
1 - 1.53292 B**(1) + 0.63297 B**(2) |
| Input Number 1 |
| Input Variable |
x |
| Shift |
3 |
| Numerator Factors |
| Factor 1: |
-0.5352 - 0.37602 B**(1) - 0.51894 B**(2) |
| Denominator Factors |
| Factor 1: |
1 - 0.54842 B**(1) |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.