| PROC CAPABILITY and General Statements |
Example 1.1: Reading Specification Limits
|
See CAPSPEC2 in the SAS/QC Sample Library
|
You can specify specification limits
either in the SPEC statement or in a SPEC= data set.
In "Computing Capability Indices" , limits were specified in a SPEC
statement. This example illustrates how to create
a SPEC= data set to read specification limits with
the SPEC= option in the PROC CAPABILITY statement.
Consider the drink can data presented
at "Computing Descriptive Statistics" . Suppose, in addition to
the fluid weight of each drink can, the weight of
the can itself is stored in a variable named CWEIGHT,
and both variables are saved in a data set called CAN2.
A listing of CAN2 follows:
Output 1.1.1: The Data Set CAN2
| Obs |
weight |
cweight |
| 1 |
12.07 |
1.07 |
| 2 |
12.02 |
0.86 |
| 3 |
12.00 |
1.06 |
| 4 |
12.01 |
1.08 |
| 5 |
11.98 |
1.02 |
| 6 |
11.96 |
0.98 |
| 7 |
12.04 |
1.04 |
| 8 |
12.05 |
1.08 |
| 9 |
12.01 |
1.03 |
| 10 |
11.97 |
1.03 |
| 11 |
12.03 |
0.96 |
| 12 |
12.03 |
1.04 |
| 13 |
12.00 |
1.00 |
| 14 |
12.04 |
0.92 |
| 15 |
11.96 |
0.95 |
| 16 |
12.02 |
0.93 |
| 17 |
12.06 |
0.99 |
| 18 |
12.00 |
1.01 |
| 19 |
12.02 |
1.00 |
| 20 |
11.91 |
1.08 |
| 21 |
12.05 |
1.09 |
| 22 |
11.98 |
0.98 |
| 23 |
11.91 |
0.96 |
| 24 |
12.01 |
0.94 |
| 25 |
12.06 |
0.90 |
| 26 |
12.02 |
1.01 |
| 27 |
12.05 |
0.99 |
| 28 |
11.90 |
1.12 |
| 29 |
12.07 |
1.08 |
| 30 |
11.98 |
1.03 |
| 31 |
12.02 |
0.97 |
| 32 |
12.11 |
0.99 |
| 33 |
12.00 |
1.01 |
| 34 |
11.99 |
1.12 |
| 35 |
11.95 |
0.99 |
| 36 |
11.98 |
0.96 |
| 37 |
12.05 |
1.00 |
| 38 |
12.00 |
0.92 |
| 39 |
12.10 |
0.91 |
| 40 |
12.04 |
1.04 |
| 41 |
12.06 |
0.90 |
| 42 |
12.04 |
1.11 |
| 43 |
11.99 |
1.01 |
| 44 |
12.06 |
0.98 |
| 45 |
11.99 |
0.97 |
| 46 |
12.07 |
1.10 |
| 47 |
11.96 |
1.07 |
| 48 |
11.97 |
1.13 |
| 49 |
12.00 |
0.96 |
| 50 |
11.97 |
0.95 |
| 51 |
12.09 |
1.02 |
| 52 |
11.99 |
1.15 |
| 53 |
11.95 |
1.08 |
| 54 |
11.99 |
1.09 |
| 55 |
11.99 |
0.90 |
| 56 |
11.96 |
1.04 |
| 57 |
11.94 |
1.05 |
| 58 |
12.03 |
1.00 |
| 59 |
12.09 |
0.90 |
| 60 |
12.03 |
1.04 |
| 61 |
11.99 |
1.00 |
| 62 |
12.00 |
1.00 |
| 63 |
12.05 |
1.03 |
| 64 |
12.04 |
0.88 |
| 65 |
12.05 |
0.98 |
| 66 |
12.01 |
1.01 |
| 67 |
11.97 |
0.97 |
| 68 |
11.93 |
0.90 |
| 69 |
12.00 |
1.02 |
| 70 |
11.97 |
0.95 |
| 71 |
12.13 |
1.03 |
| 72 |
12.07 |
1.00 |
| 73 |
12.00 |
1.08 |
| 74 |
11.96 |
0.91 |
| 75 |
11.99 |
0.97 |
| 76 |
11.97 |
0.98 |
| 77 |
12.05 |
1.03 |
| 78 |
11.94 |
0.94 |
| 79 |
11.99 |
1.07 |
| 80 |
12.02 |
0.98 |
| 81 |
11.95 |
1.07 |
| 82 |
11.99 |
0.98 |
| 83 |
11.91 |
0.93 |
| 84 |
12.06 |
0.99 |
| 85 |
12.03 |
0.91 |
| 86 |
12.06 |
1.02 |
| 87 |
12.05 |
0.95 |
| 88 |
12.04 |
1.05 |
| 89 |
12.03 |
0.88 |
| 90 |
11.98 |
1.04 |
| 91 |
12.05 |
1.04 |
| 92 |
12.05 |
1.04 |
| 93 |
12.11 |
1.03 |
| 94 |
11.96 |
1.08 |
| 95 |
12.00 |
0.99 |
| 96 |
11.96 |
0.96 |
| 97 |
11.96 |
1.05 |
| 98 |
12.00 |
0.92 |
| 99 |
12.01 |
1.08 |
| 100 |
11.98 |
1.07 |
|
The following data step creates a data set named LIMITS
containing specification limits for the fluid weight and
the can weight. LIMITS has 4 variables (_VAR_, _LSL_,
_USL_, and _TARGET_) and 2 observations. The first
observation contains the specification limit information
for the variable WEIGHT, and the second contains the
specification limit information for the variable CWEIGHT.
data limits;
length _var_ $8;
_var_ = 'weight';
_lsl_ = 11.95;
_target_ = 12;
_usl_ = 12.05;
output;
_var_ = 'cweight';
_lsl_ = 0.90;
_target_ = 1;
_usl_ = 1.10;
output;
run;
The following statements read the specification information
from the LIMITS data set into the CAPABILITY procedure using
the SPEC= option. These statements print summary statistics,
capability indices, and specification limit information for
WEIGHT and CWEIGHT. Figure 1.1
and Figure 1.2 display the output
for WEIGHT. Output 1.1.2 displays the output for CWEIGHT.
title 'Process Capability Analysis of Drink Can Data';
proc capability data=can2 specs=limits;
var weight cweight;
run;
Output 1.1.2: Printed Output for Variable CWEIGHT
| Process Capability Analysis of Drink Can Data |
| The CAPABILITY Procedure |
| Variable: cweight (Can Weight (ounces)) |
| Moments |
| N |
100 |
Sum Weights |
100 |
| Mean |
1.004 |
Sum Observations |
100.4 |
| Std Deviation |
0.06330941 |
Variance |
0.00400808 |
| Skewness |
-0.074821 |
Kurtosis |
-0.5433858 |
| Uncorrected SS |
101.1984 |
Corrected SS |
0.3968 |
| Coeff Variation |
6.30571767 |
Std Error Mean |
0.00633094 |
| Basic Statistical Measures |
| Location |
Variability |
| Mean |
1.004000 |
Std Deviation |
0.06331 |
| Median |
1.000000 |
Variance |
0.00401 |
| Mode |
1.040000 |
Range |
0.29000 |
| |
|
Interquartile Range |
0.08500 |
| NOTE: |
The mode displayed is the smallest of 2 modes with a count of 8. |
|
| Tests for Location: Mu0=0 |
| Test |
Statistic |
p Value |
| Student's t |
t |
158.5862 |
Pr > |t| |
<.0001 |
| Sign |
M |
50 |
Pr >= |M| |
<.0001 |
| Signed Rank |
S |
2525 |
Pr >= |S| |
<.0001 |
| Tests for Normality |
| Test |
Statistic |
p Value |
| Shapiro-Wilk |
W |
0.987310 |
Pr < W |
0.459 |
| Kolmogorov-Smirnov |
D |
0.061410 |
Pr > D |
>0.150 |
| Cramer-von Mises |
W-Sq |
0.048175 |
Pr > W-Sq |
>0.250 |
| Anderson-Darling |
A-Sq |
0.361939 |
Pr > A-Sq |
>0.250 |
| Quantiles (Definition 5) |
| Quantile |
Estimate |
| 100% Max |
1.150 |
| 99% |
1.140 |
| 95% |
1.105 |
| 90% |
1.080 |
| 75% Q3 |
1.045 |
| 50% Median |
1.000 |
| 25% Q1 |
0.960 |
| 10% |
0.910 |
| 5% |
0.900 |
| 1% |
0.870 |
| 0% Min |
0.860 |
| Extreme Observations |
| Lowest |
Highest |
| Value |
Obs |
Value |
Obs |
| 0.86 |
2 |
1.11 |
42 |
| 0.88 |
89 |
1.12 |
28 |
| 0.88 |
64 |
1.12 |
34 |
| 0.90 |
68 |
1.13 |
48 |
| 0.90 |
59 |
1.15 |
52 |
| Specification Limits |
| Limit |
Percent |
| Lower (LSL) |
0.900000 |
% < LSL |
3.00000 |
| Target |
1.000000 |
% Between |
92.00000 |
| Upper (USL) |
1.100000 |
% > USL |
5.00000 |
| Process Capability Indices |
| Index |
Value |
95% Confidence Limits |
| Cp |
0.526515 |
0.453237 |
0.599670 |
| CPL |
0.547575 |
0.446607 |
0.647299 |
| CPU |
0.505454 |
0.408856 |
0.600808 |
| Cpk |
0.505454 |
0.409407 |
0.601501 |
| Cpm |
0.525467 |
0.454973 |
0.601113 |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.