|
Chapter Contents |
Previous |
Next |
| The LIFEREG Procedure |
This example illustrates the use of parameter initial value specification to help overcome convergence difficulties.
The following statements create a data set and request a Weibull regression model be fit to the data.
data raw;
input censor x c1 @@;
datalines;
0 16 0.00 0 17 0.00 0 18 0.00
0 17 0.04 0 18 0.04 0 18 0.04
0 23 0.40 0 22 0.40 0 22 0.40
0 33 4.00 0 34 4.00 0 35 4.00
1 54 40.00 1 54 40.00 1 54 40.00
1 54 400.00 1 54 400.00 1 54 400.00
;
run;
proc print;
run;
title 'OLS (default) initial values';
proc lifereg data=raw;
model x*censor(1) = c1 / distribution = weibull itprint;
run;
Output 36.3.1 shows the data set contents.
Output 36.3.1: Contents of the Data Set
WARNING: Convergence not attained in 50 iterations.
WARNING: The procedure is continuing but the validity of the model
fit is questionable.
The first line (iter=0) of the iteration history table,
in Output 36.3.2, shows the default initial ordinary least squares (OLS)
estimates of the parameters.
Output 36.3.2: Initial Least Squares|
|
The following statements fit a log logistic distribution to the data.
proc lifereg data=raw;
model x*censor(1) = c1 / distribution = llogistic;
run;
The algorithm converges, and the maximum likelihood estimates
for the log logistic distribution are shown in Output 36.3.3
Output 36.3.3: Estimates from the Log Logistic Distribution|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
proc lifereg data=raw outest=outest;
model x*censor(1) = c1 / itprint distribution = weibull
intercept=2.898 initial=0.16 scale=0.05;
output out=out xbeta=xbeta;
run;
Examination of the resulting output in Output 36.3.4 shows that the convergence problem has been solved by specifying different initial values.
Output 36.3.4: Final Estimates from the Weibull Distribution|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.