next up previous


Postscript version of this file

STAT 801 Lecture 7

Reading for Today's Lecture:

Goals of Today's Lecture:

Today's notes

Normal samples: Distribution Theory

Theorem 1   Suppose $X_1,\ldots,X_n$ are independent $N(\mu,\sigma^2)$ random variables. (That is each satisfies my definition above in 1 dimension.) Then

1.
The sample mean $\bar X$ and the sample variance s2 are independent.

2.
$n^{1/2}(\bar{X} - \mu)/\sigma \sim N(0,1)$

3.
$(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$

4.
$n^{1/2}(\bar{X} - \mu)/s \sim t_{n-1}$

Proof: Let $Z_i=(X_i-\mu)/\sigma$. Then $Z_1,\ldots,Z_p$ are independent N(0,1) so $Z=(Z_1,\ldots,Z_p)^t$ is multivariate standard normal. Note that $\bar{X} = \sigma\bar{Z}+\mu$ and $s^2 = \sum(X_i-\bar{X})^2/(n-1) = \sigma^2 \sum(Z_i-\bar{Z})^2/(n-1)$Thus

\begin{displaymath}\frac{n^{1/2}(\bar{X}-\mu)}{\sigma} = n^{1/2}\bar{Z}
\end{displaymath}


\begin{displaymath}\frac{(n-1)s^2}{\sigma^2} = \sum(Z_i-\bar{Z})^2
\end{displaymath}

and

\begin{displaymath}T=\frac{n^{1/2}(\bar{X} - \mu)}{s} = \frac{n^{1/2} \bar{Z}}{s_Z}
\end{displaymath}

where $(n-1)s_Z^2 = \sum(Z_i-\bar{Z})^2$.

Thus we need only give a proof in the special case $\mu=0$ and $\sigma=1$.

Step 1: Define

\begin{displaymath}Y=(\sqrt{n}\bar{Z}, Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z})^t \, .
\end{displaymath}

(This choice means Y has the same dimension as Z.) Now

\begin{displaymath}Y =\left[\begin{array}{cccc}
\frac{1}{\sqrt{n}} &
\frac{1}{\s...
...in{array}{c}
Z_1 \\
Z_2 \\
\vdots
\\
Z_n
\end{array}\right]
\end{displaymath}

or letting M denote the matrix

Y=MZ

It follows that $Y\sim MVN(0,MM^t)$ so we need to compute MMt:
\begin{align*}MM^t & = \left[\begin{array}{c\vert cccc}
1 & 0 & 0 & \cdots & 0 \...
...egin{array}{c\vert c}
1 & 0
\\
\hline
\\
0 & Q
\end{array}\right]
\end{align*}

Now it is easy to solve for Z from Y because Zi = n-1/2Y1+Yi+1for $1 \le i \le n-1$. To get Zn we use the identity

\begin{displaymath}\sum_{i=1}^n (Z_i-\bar{Z}) = 0
\end{displaymath}

to see that $Z_n = - \sum_{i=2}^n Y_i + n^{-1/2}Y_1$. This proves that M is invertible and we find

\begin{displaymath}\Sigma^{-1} \equiv (MM^t)^{-1} =
\left[\begin{array}{c\vert c}
1 & 0
\\
\hline
\\
0 & Q^{-1}
\end{array}\right]
\end{displaymath}

Now we use the change of variables formula to compute the density of Y. It is helpful to let ${\bf y}_2$ denote the n-1 vector whose entries are $y_2,\ldots,y_n$. Note that

\begin{displaymath}y^t\Sigma^{-1}y = y_1^2 + {\bf y}_2^t Q^{-1} {\bf y_2}
\end{displaymath}

Then
\begin{align*}f_Y(y) =& (2\pi)^{-n/2} \exp[-y^t\Sigma^{-1}y/2]/\vert\det M\vert
...
...^{-(n-1)/2}\exp[-{\bf y}_2^t Q^{-1} {\bf y_2}/2]}{\vert\det M\vert}
\end{align*}

Notice that this is a factorization into a function of y1 times a function of $y_2,\ldots,y_n$. Thus $\sqrt{n}\bar{Z}$ is independent of $Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z}$. Since sZ2 is a function of $Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z}$ we see that $\sqrt{n}\bar{Z}$ and sZ2 are independent.

Furthermore the density of Y1 is a multiple of the function of y1 in the factorization above. But the factor in question is the standard normal density so $\sqrt{n}\bar{Z}N(0,1)$.

We have now done the first 2 parts of the theorem. The third part is a homework exercise but I will outline the derivation of the $\chi^2$density. In class I will do the special cae n=2 (which is notationally much simpler).

Suppose that $Z_1,\ldots,Z_n$ are independent N(0,1). We define the $\chi^2_n$ distribution to be that of $U=Z_1^2 + \cdots + Z_n^2$. Define angles $\theta_1,\ldots,\theta_{n-1}$ by
\begin{align*}Z_1 &= U^{1/2} \cos\theta_1
\\
Z_2 &= U^{1/2} \sin\theta_1\cos\th...
...\theta_{n-1}
\\
Z_n &= U^{1/2} \sin\theta_1\cdots \sin\theta_{n-1}
\end{align*}
(These are spherical co-ordinates in n dimensions. The $\theta$ values run from 0 to $\pi$ except for the last $\theta$ whose values run from 0 to $2\pi$.) Then note the following derivative formulas

\begin{displaymath}\frac{\partial Z_i}{\partial U} = \frac{1}{2U} Z_i
\end{displaymath}

and

\begin{displaymath}\frac{\partial Z_i}{\partial\theta_j} =
\left\{ \begin{array}...
...n\theta_i & j=i
\\
Z_i\cot\theta_j & j < i
\end{array}\right.
\end{displaymath}

I now fix the case n=3 to clarify the formulas. The matrix of partial derivatives is

\begin{displaymath}\left[\begin{array}{ccc}
U^{-1/2} \cos\theta_1 /2
&
-U^{1/2} ...
...theta_2
&
U^{1/2} \sin\theta_1\cos\theta_2
\end{array}\right]
\end{displaymath}

The determinant of this matrix may be found by adding $2U^{1/2}\cos\theta_j/\sin\theta_j$ times column 1 to column j+1 (which doesn't change the determinant). The resulting matrix is lower triangular with diagonal entries (after a small amount of algebra) $U^{-1/2} \cos\theta_1 /2$, $U^{1/2}\cos\theta_2/ \cos\theta_1$ and $U^{1/2} \sin\theta_1/\cos\theta_2$. We multiply these together to get

\begin{displaymath}U^{1/2}\sin(\theta_1)/2
\end{displaymath}

which is non-negative for all U and $\theta_1$. For general n we see that every term in the first column contains a factor U-1/2/2 while every other entry has a factor U1/2. Multiplying a column in a matrix by c multiplies the determinant by c so the Jacobian of the transformation is u(n-1)/2u-1/2/2 times some function, say h, which depends only on the angles. Thus the joint density of $U,\theta_1,\ldots \theta_{n-1}$ is

\begin{displaymath}(2\pi)^{-n/2} \exp(-u/2) u^{(n-2)/2}h(\theta_1, \cdots, \theta_{n-1}) / 2
\end{displaymath}

To compute the density of U we must do an n-1 dimensional multiple integral $d\theta_{n-1}\cdots d\theta_1$. We see that the answer has the form

\begin{displaymath}cu^{(n-2)/2} \exp(-u/2)
\end{displaymath}

for some c which we can evaluate by making

\begin{displaymath}\int f_U(u) du = c \int u^{(n-2)/2} \exp(-u/2) du =1
\end{displaymath}

Substitute y=u/2, du=2dy to see that

\begin{displaymath}c 2^{(n-2)/2} 2 \int y^{(n-2)/2}e^{-y} dy = c 2^{(n-1)/2} \Gamma(n/2) = 1
\end{displaymath}

so that the $\chi^2$ density is

\begin{displaymath}\frac{1}{2\Gamma(n/2)} \left(\frac{u}{2}\right)^{(n-2)/2} e^{-u/2}
\end{displaymath}

Finally the fourth part of the theorem is a consequence of the first 3 parts of the theorem and the definition of the $t_\nu$distribution, namely, that $T\sim t_\nu$ if it has the same distribution as

\begin{displaymath}Z/\sqrt{U/\nu}
\end{displaymath}

where $Z\sim N(0,1)$, $U\sim\chi^2_\nu$ and Z and U are independent.

However, I now derive the density of T in this definition:
\begin{align*}P(T \le t) &= P( Z \le t\sqrt{U/\nu})
\\
& =
\int_0^\infty \int_{-\infty}^{t\sqrt{u/\nu}} f_Z(z)f_U(u) dz du
\end{align*}
I can differentiate this with respect to t by simply differentiating the inner integral:

\begin{displaymath}\frac{\partial}{\partial t}\int_{at}^{bt} f(x)dx
=
bf(bt)-af(at)
\end{displaymath}

by the fundamental theorem of calculus. Hence

\begin{displaymath}\frac{d}{dt} P(T \le t) =
\int_0^\infty f_U(u) \sqrt{u/\nu}\frac{\exp[-t^2u/(2\nu)]}{\sqrt{2\pi}} du
\, .
\end{displaymath}

Now I plug in

\begin{displaymath}f_U(u)= \frac{1}{2\Gamma(\nu/2)}(u/2)^{(\nu-2)/2} e^{-u/2}
\end{displaymath}

to get

\begin{displaymath}f_T(t) = \int_0^\infty \frac{1}{2\sqrt{\pi\nu}\Gamma(\nu/2)}
(u/2)^{(\nu-1)/2} \exp[-u(1+t^2/\nu)/2] \, du \, .
\end{displaymath}

Make the substitution $y=u(1+t^2/\nu)/2$, $dy=(1+t^2/\nu)du/2$ $(u/2)^{(\nu-1)/2}= [y/(1+t^2/\nu)]^{(\nu-1)/2}$to get

\begin{displaymath}f_T(t) = \frac{1}{\sqrt{\pi\nu}\Gamma(\nu/2)}(1+t^2/\nu)^{-(\nu+1)/2}
\int_0^\infty y^{(\nu-1)/2} e^{-y} dy
\end{displaymath}

or

\begin{displaymath}f_T(t)= \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi\nu}\Gamma(\nu/2)}\frac{1}{(1+t^2/\nu)^{(\nu+1)/2}}
\end{displaymath}


next up previous



Richard Lockhart
1999-09-19