next up previous
Postscript version of these notes

STAT 804

Lecture 22 Notes

Properties of the Periodogram

The discrete Fourier transform

$\displaystyle {\hat X}(\omega) = \frac{1}{\sqrt{T}}\sum_{t=0}^{T-1} X_t \exp(2\pi \omega t i)
$

is periodic with period 1 because all the exponentials have period 1. Moreover,

$\displaystyle {\hat X}(1-\omega) = \frac{1}{\sqrt{T}}\sum_{t=0}^{T-1} X_t \exp(-2\pi
\omega t i) \exp(2\pi t i) = {\overline{{\hat X}(\omega)}}
$

so that the periodogram satisfies

$\displaystyle \vert{\hat X}(1-\omega)\vert^2 = \vert{\hat X}(\omega)\vert^2 \,
$

Thus the periodogram is symmetric around $ \omega=1/2$ which is called the Nyquist or folding frequency. (The value is always 1/2 in cycles per point but usually it would be converted to cycles per time unit like year or day or whatever.)

Similarly the power spectral density $ f_X$ given by

$\displaystyle f_X(\omega) = \sum_{-\infty}^\infty C_X(h) \exp(2 \pi h \omega i)
$

is periodic with period 1 and satisfies

$\displaystyle f_X(-\omega) = f_X(\omega)
$

which is equivalent to

$\displaystyle f_X(1-\omega) = f_X(\omega) \, .
$

Spectra of Some Basic Processes

Here I compute the spectra of a few basic processes directly and then indirectly by a more powerful technique.


Direct from the definition

White Noise:
Since $ C_\epsilon(k)=0$ for all non-zero $ k$ we have

$\displaystyle f_\epsilon(\omega) \equiv C_\epsilon(0) = \sigma^2_\epsilon \, .
$

MA(1):
For $ X_t = \epsilon_t - b \epsilon_{t-1}$ we have $ C_X(0)= \sigma^2(1+b^2)$ and $ C_X(\pm 1) = -b\sigma^2$ so that
$\displaystyle f_X(\omega)$ $\displaystyle =$ $\displaystyle \sigma^2(1+b^2)-b\sigma^2 (\exp(2\pi\omega i)
+\exp(-2\pi\omega i))$  
  $\displaystyle =$ $\displaystyle \sigma^2(1+b^2)-2b\sigma^2 \cos(2\pi\omega)$  

AR(1):
We have $ C_X(k) = \rho^{\vert k\vert} C_X(0)$ and
$\displaystyle f_X(\omega)$ $\displaystyle =$ $\displaystyle C_X(0)( 1+\sum_{k>0} \rho^k(\exp(2\pi\omega ki) +
(\exp(-2\pi\omega ki) )$  
  $\displaystyle =$ $\displaystyle C_X(0)( 1 + \rho ( \frac{e^{2\pi\omega i}}{1-\rho\exp(2\pi\omega i)} +
\frac{e^{-2\pi\omega i}}{1-\rho\exp(-2\pi\omega i)}))$  
  $\displaystyle =$ $\displaystyle C_X(0)( 1 + \rho \frac{\exp(2\pi\omega i)-\rho+
\exp(-2\pi\omega i)-\rho}{(1-\rho\exp(2\pi\omega
i))(1-\rho\exp(-2\pi\omega i))}$  
  $\displaystyle =$ $\displaystyle C_X(0)( 1 + \rho \frac{2(\cos(2\pi\omega)-\rho))}{1+\rho^2 -
2\rho\cos(2\pi\omega)}$  
  $\displaystyle =$ $\displaystyle C_X(0) \frac{1-\rho^2}{1+\rho^2 -2\rho\cos(2\pi\omega)}$  
  $\displaystyle =$ $\displaystyle \frac{\sigma_\epsilon^2}{1+\rho^2 -2\rho\cos(2\pi\omega)}$  

Using filters

Any mean 0 ARMA($ p,q$) process can be rewritten in MA form as

$\displaystyle X_t = \sum_{s=0}^\infty a_s \epsilon_{t-s}
$

and then the covariance of $ X$ is

$\displaystyle C_X(h) = \sum_{r=0}^\infty \sum_{s=0}^\infty a_r a_s Cov(\epsilon_{t+h-r},
\epsilon_{t-s})
$

Although the covariance simplifies for white noise, let us simply write $ C(t+h-r -(t-s)) = C(h+s-r)$ for the covariance in this double sum so that the calculation will apply to any stationary $ \epsilon$. Then plug this double sum into the definition of $ f_X$ to get

$\displaystyle f_X(\omega) = \sum_{h=-\infty}^\infty \exp(2\pi\omega h i)
\sum_{r=0}^\infty \sum_{s=0}^\infty a_r a_s C(h+s-r) \\
$

Now write the $ h$ in the complex exponential in the form $ (h+s-r) +r-s$ and bring the sum over $ h$ to the inside to get

$\displaystyle f_X(\omega) = \sum_{r=0}^\infty a_r e^{2\pi\omega ri} \sum_{s=0}^...
..._se^{-2\pi\omega si} \sum_{h=-\infty}^\infty \exp(2\pi\omega(h+s-r)i)
C(h+s-r)
$

Finally make the substitution $ k=h+s-r$ in the inside sum and define

$\displaystyle A(\omega) = \sum_{r=0}^\infty a_r e^{2\pi\omega ri}
$

to see that

$\displaystyle f_X(\omega) = A(\omega) {\overline{A(\omega)}} f_\epsilon(\omega)
$

or

$\displaystyle f_X(\omega) = \vert A(\omega)\vert^2 f_\epsilon(\omega) \, .
$

The function $ A$ (or $ \bar A$) is called the frequency response function and $ \vert A\vert^2$ the power transfer function. The jargon gain is sometimes used for $ \vert A\vert$.

The Spectrum of an ARMA($ p,q$)

An ARMA($ p,q$) process $ X$ satisfies

$\displaystyle \sum_{s=0}^p a_s X_{t-s} =
\sum_{r=0}^q b_r \epsilon_{t-r}
$

so that if $ Y$ is the process $ \sum_{s=0}^p a_s X_{t-s}$ then

$\displaystyle f_Y(\omega) = \vert A(\omega)\vert^2 f_X(\omega)
$

where $ A(\omega) = \sum_{s=0}^p a_s \exp(2\pi\omega si)$. At the same time $ Y_t = \sum_{r=0}^q b_r \epsilon_{t-r}$ so

$\displaystyle f_Y(\omega) = \vert B(\omega)\vert^2 f_\epsilon(\omega)
$

where $ B(\omega) = \sum_{s=0}^q b_s \exp(2\pi\omega si)$. Hence

$\displaystyle f_X(\omega) = \frac{\vert B(\omega)\vert^2}{\vert A(\omega)\vert^2}\, .
$

For example, in the ARMA(1,1) case $ X_t-aX_{t-1} = \epsilon_t-b\epsilon_{t-1}$ we find (referring to our MA(1) calculation above that $ \vert B(\omega)\vert^2 = 1+b^2-2b \cos(2\pi\omega)$ and $ \vert A(\omega)\vert^2 = 1+a^2-2a \cos(2\pi\omega)$ so that

$\displaystyle f_X(\omega) = \frac{1+b^2-2b \cos(2\pi\omega)}{1+a^2-2a \cos(2\pi\omega} \, .
$


next up previous



Richard Lockhart
2001-09-30