Gries Lab

Research Interests

We study mechanisms of insect/spider/animal communication and resource-foraging. We elucidate semiochemical, sonic, visual, infrared and bacterial communication signals and foraging cues, and investigate how these signals or cues may have evolved in response to community composition, scarceness of resources, and physical parameters of the habitat. We also develop acquired knowledge for sophisticated control of pest insects or animals.
Most of our current study objects (hobo spiders; house flies; Drosophila fruit flies; mosquitoes; twig and tree borer moths; lymantriid moths; earwigs; Cimex, Boisea, and Leptoglossus bugs; cecidomyiid midges; cockroaches; braconid wasps; silverfish and firebrats; etc.) have major economic or ecological implications. We work on them under the premise that their biology and communication ecology is as intriguing as that of any other insect.
Findings of our research can be developed for earth-friendly control of insects in urban, agricultural, and forest settings. This is why we attract funding from Industrial Sponsors. In June 2004, our lab has obtained an NSERC-Industrial Research Chair (IRC) in Multimodal Animal Communication Ecology, with Contech Enterprises Inc. and Global Forest as the current main  sponsors. This NSERC-IRC is a triple-win because: (1) it provides a perfect training and research environment for many graduate and undergraduate students, and pushes the frontiers of science; (2) it provides society with earth-friendly solutions for pest problems; and (3) it generates new products and technologies for the industrial sponsors.

In the News

PicturesForBanner (7 of 18)

as featured in an article at

Black widow spiders use jittery, abdominal movements not unlike twerking — the hip-shaking dance move made infamous by Miley Cyrus — to navigate the dangerous world of arachnid mating, according to a newly published study from a team of British Columbia researchers.

In the paper, published in Frontiers in Zoology