Google Scholar page

26. Protein thermal sensing regulates physiological amyloid aggregation
D Marijan, EA Momchilova, D Burns, S Chandhok, R Zapf, H Wille, DA Potoyan, TE Audas
Nature Communications, 15 (1), 1222 (2024)


25. Stress-mediated aggregation of disease-associated proteins in amyloid bodies
S Chandhok, L Pereira, EA Momchilova, D Marijan, R Zapf, E Lacroix, A Kaur, S Keymanesh, C Krieger, TE Audas
Scientific Reports, 13 (1), 14471 (2023)


24. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells
QUA Qureshi, TE Audas, RD Morin, KM Coyle
Biochemistry and Cell Biology, 101 (2), 160-171 (2023)


23. The why of RNA granules: Form, function, and regulation
T Yamazaki, TE Audas, NG Farny
Frontiers in Molecular Biosciences, 9, 1111463 (2022)


22. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles
E Lacroix, TE Audas
Frontiers in Molecular Biosciences, 9, 998363 (2022)


21. Evolutionary conservation of systemic and reversible amyloid aggregation
E Lacroix, L Pereira, B Yoo, KM Coyle, S Chandhok, R Zapf, D Marijan, RD Morin, S Vlachos, N Harden, TE Audas
Journal of Cell Science, 134 (22), jcs258907 (2021)


20. Local translation in nuclear condensate amyloid bodies
PR Theodoridis, M Bokros, D Marijan, NC Balukoff, D Wang, CC Kirk, TD Budine, HD Goldsmith, M Wang, TE Audas, S Lee
Proceedings of the National Academy of Sciences, 118(7), e2014457118 (2021)


19. Coding and non-coding drivers of mantle cell lymphoma identified through exome and genome sequencing
P Pararajalingam, KM Coyle, S Arthur, N Thomas, M Alcaide, B Meissner, M Boyle, Q Qureshi, BM Grande, C Rushton, GW Slack, A Mungall, C Tam, R Agarwal, SJ Dawson, G Lenz, S Balasubramanian, RD Gascoyne, C Steidl, J Connors, D Villa, TE Audas, MA Marra, NA Johnson, DW Scott, RD Morin
Blood (2020)


18. Stress‐specific aggregation of proteins in the amyloid bodies
D Marijan, R Tse, K Elliott, S Chandhok, M Luo, E Lacroix, TE Audas
FEBS Letters, 593 (22), 3162-3172 (2019)


17. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma  SE Arthur, A Jiang, BM Grande, M Alcaide, R Cojocaru, CK Rushton, A Mottok, LK Hilton, PK Lat, E Zhao, I Culibrk, D Ennishi, S Jessa, L Chong, N Thomas, P Pararajalingam, B Meissner, M Boyle, J Davidson, KR Bushell, D Lai, P Farinha, GW Slack, GB Morin, S Shah, D Sen, SJM Jones, AJ Mungall, RD Gascoyne, TE Audas, P Unrau, MA Marra, JM Connors, C Steidl, DW Scott and RD Morin 
Nature Communications, 9 (1), 4001 (2018) 


16. Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis
M Wang, X Tao, MD Jacob, CA Bennett, JJD Ho, ML Gonzalgo, TE Audas and S Lee
Cell Reports, 24(7), 1713-1721 (2018)


15. Disentangling a Bad Reputation: Changing Perceptions of Amyloids
M Wang, TE Audas and S Lee 
Trends in Cell Biology, 27(7), 465-467 (2017)


14. Adaptation to stressors by systemic protein amyloidogenesis
TE Audas, DE Audas, MD Jacob, JJD Ho, M Khacho, M Wang, JK Perera, C Gardiner, CA Bennett, T Head, ON Kryenko, M Jorda, S Daunert, A Malhotra, L Trinkle-Mulcahy, ML Gonzalgo and S Lee
Developmental Cell, 39(2), 155-168 (2016)


13. Characterization of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication
TE Audas, PW Hardy-Smith, J Penney, T Taylor and R Lu
European Journal of Cell Biology, 95(12), 611-622 (2016)


12. Systemic reprogramming of translation efficiencies on oxygen stimulus
JJD Ho, M Wang, TE Audas, D Kwon, SK Carlsson, S Timpano, SL Evagelou, S Brothers, ML Gonzalgo, JR Krieger, S Chen, J Uniacke and S Lee
Cell Reports, 14(6), 1293-1300 (2016)


11. Stressing out over long noncoding RNA
TE Audas and S Lee
Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1859(1), 184-191 (2016)


10. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation
SN Tessier, TE Audas, CW Wu, S Lee and KB Storey
Cell Stress and Chaperones, 19(6), 813-825 (2014)


9. DNMT3a epigenetic program regulates the HIF-2α oxygen-sensing pathway and the cellular response to hypoxia
G Lachance, J (Uniacke*, TE Audas*), CE Holterman, A Franovic, J Payette and S Lee
Proceedings of the National Academy of Sciences, 111(21), 7783-7788 (2014)


8. Environmental cues induce a long noncoding RNA–dependent remodeling of the nucleolus
MD Jacob, TE Audas, J Uniacke, L Trinkle-Mulcahy and S Lee
Molecular Biology of the Cell, 24(18), 2943-2953 (2013)


7. Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal IGS
MD Jacob, TE Audas and S Lee
Nucleus, 3(4), 315-319 (2012)


6. Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection
(HF Burnett*, TE Audas*), G Liang and R Lu
Cell Stress and Chaperones, 17(4), 473-483 (2012)


5. The nucleolar detention pathway: A cellular strategy for regulating molecular networks
TE Audas, MD Jacob and S Lee
Cell Cycle, 11(11), 2059-2062 (2012)


4. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA
TE Audas, MD Jacob and S Lee
Molecular Cell, 45(2), 147-157 (2012)


3. A Novel protein, Luman/CREB3 reruitment factor, inhibits Luman activation of the unfolded protein response
TE Audas, Y Li, G Liang and R Lu
Molecular and Cellular Biology, 28(12), 3952-3966 (2008)


2. Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element
G Liang, TE Audas, Y Li, GP Cockram, JD Dean, AC Martyn, K Kokame and R Lu
Molecular and Cellular Biology, 26(21), 7999-8010 (2006)


1. Luman is capable of binding and activating transcription from the unfolded protein response element
LM DenBoer, PW Hardy-Smith, MR Hogan, GP Cockram, TE Audas and R Lu
Biochemical and Biophysical Research Communications, 331(1), 113-119 (2005)