next up previous


Postscript version of this file

STAT 380 Lecture 6

Reading for Today's Lecture: Chapter 3

Goals of Today's Lecture:

Conditional Expectations

Example:

\begin{displaymath}f(x,y) = \begin{cases}x+y & 0 \le x,y \le 1
\\
0 & \text{otherwise}
\end{cases}\end{displaymath}

has conditional of Y|X:

\begin{displaymath}f_{Y\vert X}(y\vert x) = \begin{cases}
\frac{x+y}{x+\frac{1}{...
...\le x \le 1, y < 0
\\
\text{undefined} & otherwise
\end{cases}\end{displaymath}

so, for $0 \le x \le 1$,
\begin{align*}{\rm E}(Y\vert X=x) & = \int_0^1 y \frac{x+y}{x+\frac{1}{2}} dy
\\
& = \frac{x/2 +1/3}{x+1/2}
\end{align*}

Computing expectations by conditioning:

Notation: ${\rm E}(Y\vert X)$ is the function of X you get by working out ${\rm E}(Y\vert X=x)$, getting a formula in x and replacing x by X. This makes ${\rm E}(Y\vert X)$ a random variable.

Properties:

1: ${\rm E}(A(X)Y+B(X)Z\vert X) = A(X){\rm E}(Y\vert X) +B(X){\rm E}(Z\vert X)$.

2: If Y and X are independent then

\begin{displaymath}{\rm E}(Y\vert X) = {\rm E}(Y)
\end{displaymath}

3: ${\rm E}(1\vert X) = 1$.

4: ${\rm E}\left[{\rm E}(Y\vert X)\right] = {\rm E}(Y) $ (compute average holding X fixed first, then average over X).

In example:

\begin{displaymath}{\rm E}(Y\vert X) = \frac{X+2/3}{2X+1}
\end{displaymath}

Application to last names problem. Put $m={\rm E}(X)$


\begin{align*}{\rm E}(Z_n) & = {\rm E}\left[{\rm E}(Z_n\vert X)\right]
\\
& = {...
...Z_{n-2})
\\
& \quad \vdots
\\
& = m^{n-1}{\rm E}(Z_1)
\\
& = m^n
\end{align*}

For m < 1 expect exponential decay. For m>1 exponential growth (if not extinction).


next up previous



Richard Lockhart
2000-09-20