next up previous


Postscript version of this file

STAT 380 Week 6

Poisson Processes

Particles arriving over time at a particle detector. Several ways to describe most common model.

Approach 1: numbers of particles arriving in an interval has Poisson distribution, mean proportional to length of interval, numbers in several non-overlapping intervals independent.

For $ s<t$, denote number of arrivals in $ (s,t]$ by $ N(s,t)$. Model is

  1. $ N(s,t)$ has a Poisson $ (\lambda(t-s))$ distribution.

  2. For $ 0 \le s_1 < t_1 \le s_2 < t_2 \cdots \le s_k < t_k$ the variables $ N(s_i,t_i);i=1,\ldots,k$ are independent.

Approach 2:

Let $ 0 < S_1 <S_2 < \cdots $ be the times at which the particles arrive.

Let $ T_i = S_i-S_{i-1}$ with $ S_0=0$ by convention.

Then $ T_1,T_2,\ldots$ are independent Exponential random variables with mean $ 1/\lambda$.

Note $ P(T_i > x) =e^{-\lambda x}$ is called survival function of $ T_i$.

Approaches are equivalent. Both are deductions of a model based on local behaviour of process.

Approach 3: Assume:

  1. given all the points in $ [0,t]$ the probability of 1 point in the interval $ (t,t+h]$ is of the form

    $\displaystyle \lambda h +o(h)
$

  2. given all the points in $ [0,t]$ the probability of 2 or more points in interval $ (t,t+h]$ is of the form

    $\displaystyle o(h)
$

All 3 approaches are equivalent. I show: 3 implies 1, 1 implies 2 and 2 implies 3. First explain $ o$, $ O$.

Notation: given functions $ f$ and $ g$ we write

$\displaystyle f(h) = g(h) +o(h)
$

provided

$\displaystyle \lim_{h \to 0} \frac{f(h)-g(h)}{h} = 0
$

[Aside: if there is a constant $ M$ such that

$\displaystyle \limsup_{h \to 0} \left\vert\frac{f(h)-g(h)}{h}\right\vert \le M
$

we say

$\displaystyle f(h) = g(h)+O(h)
$

Notation due to Landau. Another form is

$\displaystyle f(h) = g(h)+O(h)
$

means there is $ \delta>0$ and $ M$ s.t. for all $ \vert h\vert<\delta$

$\displaystyle \vert f(h)-g(h) \vert\le M h
$

Idea: $ o(h)$ is tiny compared to $ h$ while $ O(h)$ is (very) roughly the same size as $ h$.]

Model 3 implies 1: Fix $ t$, define $ f_t(s)$ to be conditional probability of 0 points in $ (t,t+s]$ given value of process on $ [0,t]$.

Derive differential equation for $ f$. Given process on $ [0,t]$ and 0 points in $ (t,t+s]$ probability of no points in $ (t,t+s+h]$ is

$\displaystyle f_{t+s}(h) = 1-\lambda h+o(h)
$

Given the process on $ [0,t]$ the probability of no points in $ (t,t+s]$ is $ f_t(s)$. Using $ P(AB\vert C)=P(A\vert BC)P(B\vert C)$ gives

$\displaystyle f_t(s+h)$ $\displaystyle = f_t(s)f_{t+s}(h)$    
  $\displaystyle = f_t(s)(1-\lambda h +o(h))$    

Now rearrange, divide by $ h$ to get

$\displaystyle \frac{f_t(s+h) - f_t(s)}{h} = -\lambda f_t(s) +\frac{o(h)}{h}
$

Let $ h \to 0$ and find

$\displaystyle \frac{\partial f_t(s)}{\partial s} = -\lambda f_t(s)
$

Differential equation has solution

$\displaystyle f_t(s) = f_t(0) \exp(-\lambda s) = \exp(-\lambda s)\, .
$

Notice: survival function of exponential rv..

General case. Notation: $ N(t) =N(0,t)$.

$ N(t)$ is a non-decreasing function of $ t$. Let

$\displaystyle P_k(t) = P(N(t)=k)
$

Evaluate $ P_k(t+h)$ by conditioning on $ N(s);0 \le s < t$ and $ N(t)=j$.

Given $ N(t)=j$ probability that $ N(t+h) = k$ is conditional probability of $ k-j$ points in $ (t,t+h]$.

So, for $ j\le k-2$:

\begin{multline*}
P(N(t+h)=k\vert N(t) = j, N(s), 0 \le s < t)
\\ =o(h)
\end{multline*}

For $ j=k-1$ we have

\begin{multline*}
P(N(t+h)= k\vert N(t) = k-1, N(s), 0 \le s < t)
\\
= \lambda h + o(h)
\end{multline*}

For $ j=k$ we have

\begin{multline*}
P(N(t+h)= k\vert N(t) = k, N(s), 0 \le s < t)
\\
= 1-\lambda h + o(h)
\end{multline*}

$ N$ is increasing so only consider $ j\le k$.

$\displaystyle P_k(t+h)$ $\displaystyle = \sum_{j=0}^k P(N(t+h)=k\vert N(t) = j) P_j(t)$    
  $\displaystyle = P_k(t) (1-\lambda h) +\lambda h P_{k-1}(t) + o(h)$    

Rearrange, divide by $ h$ and let $ h \to 0$ t get

$\displaystyle P_k^\prime(t) = -\lambda P_k(t) + \lambda P_{k-1}(t)
$

For $ k=0$ the term $ P_{k-1}$ is dropped and

$\displaystyle P^\prime_0(t) = -\lambda P_0(t)
$

Using $ P_0(0)=1$ we get

$\displaystyle P_0(t) = e^{-\lambda t}
$

Put this into the equation for $ k=1$ to get

$\displaystyle P_1^\prime(t) = -\lambda P_1(t) +\lambda e^{-\lambda t}
$

Multiply by $ e^{\lambda t}$ to see

$\displaystyle \left(e^{\lambda t}P_1(t)\right)^\prime = \lambda
$

With $ P_1(0)=0$ we get

$\displaystyle P_1(t) = \lambda t e^{-\lambda t}
$

For general $ k$ we have $ P_k(0)=0$ and

$\displaystyle \left(e^{\lambda t}P_k(t)\right)^\prime = \lambda e^{\lambda t}P_{k-1}(t)
$

Check by induction that

$\displaystyle e^{\lambda t}P_k(t) = (\lambda t)^k/k!
$

Hence: $ N(t)$ has Poisson $ (\lambda t)$ distribution.

Similar ideas permit proof of

\begin{multline*}
P(N(s,t)=k\vert N(u); 0 \le u \le s)
\\
= \frac{\left\{\lambda(t-s)\right\}^k e^{-\lambda(t-s) }}{k!}
\end{multline*}

From which (by induction) we can prove that $ N$ has independent Poisson increments.

Exponential Interarrival Times

If $ N$ is a Poisson Process we define $ T_1,T_2,\ldots$ to be the times between 0 and the first point, the first point and the second and so on.

Fact: $ T_1,T_2,\ldots$ are iid exponential rvs with mean $ 1/\lambda$.

We already did $ T_1$ rigorously. The event $ T>t$ is exactly the event $ N(t)=0$. So

$\displaystyle P(T>t) = \exp(-\lambda t)
$

which is the survival function of an exponential rv.

I do case of $ T_1,T_2$. Let $ t_1,t_2$ be two positive numbers and $ s_1=t_1$, $ s_2=t_1+t_2$. Consider event

$\displaystyle \{t_1 < T_1 \le t_1+\delta_1\} \cap \{t_2 < T_2 \le t_2+\delta_2\} \, .
$

This is almost the same as the intersection of the four events:

$\displaystyle N(0,t_1]$ $\displaystyle =0$    
$\displaystyle N(t_1,t_1+\delta_1]$ $\displaystyle = 1$    
$\displaystyle N(t_1+\delta_1,t_1+\delta_1+t_2]$ $\displaystyle =0$    
$\displaystyle N(s_2+\delta_1,s_2+\delta_1+\delta_2]$ $\displaystyle = 1$    

which has probability

$\displaystyle e^{-\lambda t_1} \times \lambda\delta_1 e^{-\lambda \delta_1}
\times e^{-\lambda t_2} \times \lambda\delta_2 e^{-\lambda \delta_2}
$

Divide by $ \delta_1\delta_2$ and let $ \delta_1$ and $ \delta_2$ go to 0 to get joint density of $ T_1,T_2$ is

$\displaystyle \lambda^2e^{-\lambda t_1}e^{-\lambda t_2}
$

which is the joint density of two independent exponential variates.

More rigor:

First step: Compute

$\displaystyle P( 0 < S_1 \le s_1 < S_2 \le s_2 \cdots < S_k \le s_k)
$

This is just the event of exactly 1 point in each interval $ (s_{i-1},s_i]$ for $ i=1,\ldots,k-1$ ($ s_0=0$) and at least one point in $ (s_{k-1},s_k]$ which has probability

$\displaystyle \prod_1^{k-1} \left\{\lambda(s_i-s_{i-1})e^{-\lambda(s_i-s_{i-1})}\right\}
\left(1-e^{-\lambda(s_k-s_{k-1})}\right)
$

Second step: write this in terms of joint cdf of $ S_1,\ldots,S_k$. I do $ k=2$:

\begin{multline*}
P( 0 < S_1 \le s_1 < S_2 \le s_2) \\ =
F_{S_1,S_2}(s_1,s_2)-F_{S_1,S_2}(s_1,s_1)
\end{multline*}

Notice tacit assumption $ s_1 < s_2$.

Differentiate twice, that is, take

$\displaystyle \frac{\partial^2}{\partial s_1\partial s_2}
$

to get

\begin{multline*}
f_{S_1,S_2}(s_1,s_2)\\ = \frac{\partial^2}{\partial s_1\partia...
...ambda s_1 e^{-\lambda s_1} \left(1-e^{-\lambda (s_2-s_1)}\right)
\end{multline*}

Simplify to

$\displaystyle \lambda^2 e^{-\lambda s_2}
$

Recall tacit assumption to get

$\displaystyle f_{S_1,S_2}(s_1,s_2) =\lambda^2 e^{-\lambda s_2} 1(0 < s_1 < s_2)
$

That completes the first part.

Now compute the joint cdf of $ T_1,T_2$ by

$\displaystyle F_{T_1,T_2}(t_1,t_2) = P(S_1 < t_1, S_2-S_1 <t_2)
$

This is

$\displaystyle P(S_1 < t_1,$ $\displaystyle S_2-S_1 <t_2)$    
  $\displaystyle = \int_0^{t_1} \int_{s_1}^{s_1+t_2} \lambda^2 e^{-\lambda s_2} ds_2ds_1$    
  $\displaystyle = \lambda \int_0^{t_1} \left(e^{-\lambda s_1} - e^{-\lambda(s_1+t_2)}\right) ds_1$    
  $\displaystyle = 1-e^{-\lambda t_1} - e^{-\lambda t_2} + e^{-\lambda(t_1+t_2)}$    

Differentiate twice to get

$\displaystyle f_{T_1,T_2}(t_1,t_2) = \lambda e^{-\lambda t_1} \lambda e^{-\lambda t_2}
$

which is the joint density of two independent exponential random variables.

Summary so far:

Have shown:

Instantaneous rates model implies independent Poisson increments model implies independent exponential interarrivals.

Next: show independent exponential interarrivals implies the instantaneous rates model.

Suppose $ T_1,\ldots$ iid exponential rvs with means $ 1/\lambda$. Define $ N_t$ by $ N_t=k$ if and only if

$\displaystyle T_1+\cdots+T_k \le t \le T_1+\cdots +T_{k+1}
$

Let $ A$ be the event $ N(s)=n(s) ;0 < s \le t$. We are to show

$\displaystyle P(N(t,t+h] = 1\vert N(t)=k,A) = \lambda h + o(h)
$

and

$\displaystyle P(N(t,t+h] \ge 2\vert N(t)=k,A) = o(h)
$

If $ n(s)$ is a possible trajectory consistent with $ N(t) = k$ then $ n$ has jumps at points

$\displaystyle s_1\equiv t_1,s_2\equiv t_1+t_2, \ldots,s_k\equiv t_1+\cdots+t_k < t
$

and at no other points in $ (0,t]$.

So given $ N(s)=n(s) ;0 < s \le t$ with $ n(t)=k$ we are essentially being given

$\displaystyle T_1=t_1,\ldots,T_k=t_k, T_{k+1}> t-s_k
$

and asked the conditional probabilty in the first case of the event $ B$ given by

$\displaystyle t-s_k <T_{k+1}\le t-s_k+h < T_{k+2}+T_{k+1}\, .
$

Conditioning on $ T_1,\ldots,T_k$ irrelevant (independence).

$\displaystyle P(N(t,t+h] = 1\vert$ $\displaystyle N(t)=k,A) /h$    
  $\displaystyle = P(B\vert T_{k+1}> t-s_k)/h$    
  $\displaystyle = \frac{P(B) }{he^{-\lambda(t-s_k)}}$    

The numerator may be evaluated by integration:

$\displaystyle P(B) = \int_{t-s_k}^{t-s_k+h} \int_{t-s_k+h - s_1}^\infty \lambda^2 e^{-\lambda(s_1+s_2)} ds_2ds_1
$

Let $ h \to 0$ to get the limit

$\displaystyle P
(N(t,t+h] = 1\vert N(t)=k,A) /h \to \lambda
$

as required.

The computation of

$\displaystyle \lim_{h\to 0} P(N(t,t+h] \ge 2\vert N(t)=k,A) /h
$

is similar.

Properties of exponential rvs

Convolution: If $ X$ and $ Y$ independent rvs with densities $ f$ and $ g$ respectively and $ Z=X+Y$ then

$\displaystyle P(Z \le z) = \int_{-\infty}^\infty \int_{-\infty}^{z-x} f(x) g(y) dy dx
$

Differentiating wrt $ z$ we get

$\displaystyle f_Z(z) = \int_{-\infty}^\infty f(x) g(z-x) dx
$

This integral is called the convolution of densities $ f$ and $ g$.

If $ T_1,\ldots,T_n$ iid Exponential$ (\lambda)$ then $ S_n=T_1+\cdots+T_n$ has a Gamma $ (n,\lambda)$ distribution. Density of $ S_n$ is

$\displaystyle f_{S_n}(s) = \lambda (\lambda s)^{n-1} e^{-\lambda s} / n!
$

for $ s>0$.

Proof:

$\displaystyle P(S_n>s)$ $\displaystyle = P(N(0,s] < n)$    
  $\displaystyle = \sum_{j=0}^{n-1} (\lambda s)^j e^{-\lambda s}/j!$    

Then

$\displaystyle f_{S_n}(s)$ $\displaystyle = \frac{d}{ds} P(S_n \le s)$    
  $\displaystyle = \frac{d}{ds}\left\{1-P(S_n>s)\right\}$    
  $\displaystyle = -\lambda \sum_{j=1}{n-1}\left\{ j(\lambda s)^{j-1} -(\lambda s)^j\right\} \frac{e^{-\lambda s}}{j!}$    
  $\displaystyle \qquad + \lambda e^{-\lambda s}$    
  $\displaystyle = \lambda e^{-\lambda s } \sum_{j=1}^{n-1}\left\{ \frac{(\lambda s)^j}{j!} - \frac{(\lambda s)^{j-1}}{(j-1)!}\right\}$    
  $\displaystyle \qquad + \lambda e^{-\lambda s}$    

This telescopes to

$\displaystyle f_{S_n}(s) = \lambda (\lambda s)^{n-1} e^{-\lambda s} / (n-1)!
$

Extreme Values: If $ X_1,\ldots,X_n$ are independent exponential rvs with means $ 1/\lambda_1,\ldots,1/\lambda_n$ then $ Y = \min\{X_1,\ldots,X_n\}$ has an exponential distribution with mean

$\displaystyle \frac{1}{\lambda_1+\cdots+\lambda_n}
$

Proof:

$\displaystyle P(Y > y)$ $\displaystyle = P(\forall k X_k>y)$    
  $\displaystyle = \prod e^{-\lambda_k y}$    
  $\displaystyle = e^{-\sum\lambda_k y}$    

Memoryless Property: conditional distribution of $ X-x$ given $ X \ge x$ is exponential if $ X$ has an exponential distribution.

Proof:

$\displaystyle P(X-x>y\vert X\ge$ $\displaystyle x)$    
  $\displaystyle = \frac{P(X>x+y,X\ge x)}{P(X>x)}$    
  $\displaystyle = \frac{PX>x+y)}{P(X\ge x)}$    
  $\displaystyle = \frac{e^{-\lambda(x+y)}}{e^{-\lambda x}}$    
  $\displaystyle = e^{-\lambda y}$    

Hazard Rates

The hazard rate, or instantaneous failure rate for a positive random variable $ T$ with density $ f$ and cdf $ F$ is

$\displaystyle r(t) = \lim_{\delta\to 0} \frac{P(t < T\le t+\delta \vert T \ge t)}{\delta}
$

This is just

$\displaystyle r(t) = \frac{f(t)}{1-F(t)}
$

For an exponential random variable with mean $ 1/\lambda$ this is

$\displaystyle h(t) = \frac{ \lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda
$

The exponential distribution has constant failure rate.

Weibull random variables have density

$\displaystyle f(t\vert\lambda,\alpha) = \lambda(\lambda t)^{\alpha-1}e^{- (\lambda t)^\alpha}
$

for $ t>0$. The corresponding survival function is

$\displaystyle 1-F(t) = e^{- (\lambda t)^\alpha}
$

and the hazard rate is

$\displaystyle r(t) = \lambda(\lambda t)^{\alpha-1}
$

which is increasing for $ \alpha>1$, decreasing for $ \alpha<1$. For $ \alpha=1$ this is the exponential distribution.

Since

$\displaystyle r(t) = \frac{dF(t)/dt}{1-F(t)} =-\frac{d\log(1-F(t))}{dt}
$

we can integrate to find

$\displaystyle 1-F(t) = \exp\{ -\int_0^t r(s) ds\}
$

so that $ r$ determines $ F$ and $ f$.


next up previous



Richard Lockhart
2002-02-07