next up previous


Postscript version of this page

STAT 801: Mathematical Statistics

Confidence Sets

Definition: A level $ \beta$ confidence set for a parameter $ \phi(\theta)$ is a random subset $ C$, of the set of possible values of $ \phi$ such that for each $ \theta$

$\displaystyle P_\theta(\phi(\theta) \in C) \ge \beta
$

Confidence sets are very closely connected with hypothesis tests:

From confidence sets to tests

Suppose $ C$ is a level $ \beta=1-\alpha$ confidence set for $ \phi$.

To test $ \phi=\phi_0$: reject if $ \phi\not\in C$. This test has level $ \alpha$.

From tests to confidence sets

Conversely, suppose that for each $ \phi_0$ we have available a level $ \alpha$ test of $ \phi=\phi_0$ who rejection region is say $ R_{\phi_0}$.

Define $ C=\{\phi_0: \phi=\phi_0$    is not rejected$ \}$; get level $ 1-\alpha$ confidence set for $ \phi$.

Example: Usual $ t$ test gives rise in this way to the usual $ t$ confidence intervals

$\displaystyle \bar{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}.
$

Confidence sets from Pivots

Definition: A pivot (pivotal quantity) is a function $ g(\theta,X)$ whose distribution is the same for all $ \theta$. ($ \theta$ in pivot is same $ \theta$ as being used to calculate distribution of $ g(\theta,X)$.

Using pivots to generate confidence sets:

Pick a set $ A$ in space of possible values for $ g$.

Let $ \beta=P_\theta(g(\theta,X) \in A)$; since $ g$ is pivotal $ \beta$ is the same for all $ \theta$.

Given data $ X$ solve the relation

$\displaystyle g(\theta,X) \in A
$

to get

$\displaystyle \theta \in C(X,A) \, .
$

Example: $ (n-1) s^2/\sigma^2 \sim \chi_{n-1}^2
$ is a pivot in the $ N(\mu,\sigma^2)$ model.

Given $ \beta=1-\alpha$ consider the two points

$\displaystyle \chi_{n-1,1-\alpha/2}^2$    and $\displaystyle \chi_{n-1,\alpha/2}^2.
$

Then

$\displaystyle P(\chi_{n-1,1-\alpha/2}^2 \le (n-1) s^2/\sigma^2 \le \chi_{n-1,\alpha/2}^2) = \beta
$

for all $ \mu,\sigma$.

Solve this relation:

$\displaystyle P( \frac{(n-1)^{1/2} s}{ \chi_{n-1,\alpha/2}} \le \sigma \le \frac{(n-1)^{1/2} s}{
\chi_{n-1,1-\alpha/2}}) = \beta
$

so interval

$\displaystyle \left[\frac{(n-1)^{1/2} s}{\chi_{n-1,\alpha/2}},
\frac{(n-1)^{1/2} s}{\chi_{n-1,1-\alpha/2}}\right]
$

is a level $ 1-\alpha$ confidence interval.

In the same model we also have

$\displaystyle P(\chi_{n-1,1-\alpha}^2 \le (n-1) s^2/\sigma^2 ) = \beta
$

which can be solved to get

$\displaystyle P(\sigma \le \frac{(n-1)^{1/2} s}{
\chi_{n-1,1-\alpha}}) = \beta
$

This gives a level $ 1-\alpha$ interval

$\displaystyle (0,(n-1)^{1/2} s/\chi_{n-1,1-\alpha}) \, .
$

The right hand end of this interval is usually called a confidence upper bound.

In general the interval from

$\displaystyle (n-1)^{1/2} s/\chi_{n-1,\alpha_1}$    to $\displaystyle (n-1)^{1/2} s/\chi_{n-1,1-\alpha_2}
$

has level $ \beta = 1 -\alpha_1-\alpha_2$. For fixed $ \beta$ can minimize length of resulting interval numerically -- rarely used. See homework for an example.

next up previous



Richard Lockhart
2001-03-26