# Spring 2023 - MATH 314 D100

## Overview

• #### Course Times + Location:

Mo, We, Fr 10:30 AM – 11:20 AM
WMC 2830, Burnaby

• #### Exam Times + Location:

Apr 17, 2023
3:30 PM – 6:30 PM
AQ 5039, Burnaby

• #### Instructor:

Ralf Wittenberg
rwwitten@sfu.ca
1 778 782-4792
• #### Prerequisites:

MATH 260 or MATH 310, with a minimum grade of C-; and one of MATH 251 with a grade of B+, or one of MATH 252 or 254, with a minimum grade of C-.

## Description

#### CALENDAR DESCRIPTION:

Fourier series, ODE boundary and eigenvalue problems. Separation of variables for the diffusion wave and Laplace/Poisson equations. Polar and spherical co-ordinate systems. Symbolic and numerical computing, and graphics for PDEs. Quantitative.

#### COURSE DETAILS:

What we perceive of the world around us are variations of physical effects (like heat, sound & light) over space and time. Partial differential equations (PDEs) are the mathematical language for describing this sensory landscape in terms of continuous functions. This course contains the core of the traditional boundary value problems curriculum, but will also introduce the computer graphics and numerical computational tools associated with the analysis of PDEs and their solutions.

Central to the theory of linear PDEs are the Fourier series and Fourier transform.  The numerical implementation of the Fourier series, the fast Fourier transform (FFT), is one of the most important numerical algorithms in scientific computing.  The trio of elementary PDEs: the potential, heat and wave equations will be introduced through their Fourier solutions. The generalization of these to higher dimensions will naturally lead to the "special" functions, such as the Bessel function and spherical harmonics.

• Assignments 30%
• Midterm 20%
• Final Exam 50%

#### NOTES:

THE INSTRUCTOR RESERVES THE RIGHT TO CHANGE ANY OF THE ABOVE INFORMATION
Students should be aware that they have certain rights to confidentiality concerning the return of course papers and the posting of marks.
Please pay careful attention to the options discussed in class at the beginning of the semester.

#### REQUIREMENTS:

This course is delivered in person, on campus. Should public health guidelines recommend limits on in person gatherings, this course may include virtual meetings. As such, all students are recommended to have access to strong and reliable internet, the ability to scan documents (a phone app is acceptable) and access to a webcam and microphone (embedded in a computer is sufficient).

## Materials

Partial Differential Equations : Analytical and Numerical Methods
2/E
Mark S. Gockenbach
SIAM

ISBN: 9780898719352