Example 19.1: Path Analysis: Stability of Alienation
The following covariance matrix from Wheaton, Muthen, Alwin,
and Summers (1977) has served to illustrate the
performance of several implementations for the analysis of structural
equation models. Two different models have been analyzed by an early
implementation of LISREL and are
mentioned in J
reskog (1978).
You also can find a more detailed discussion of these models
in the LISREL VI manual (J
reskog and S
rbom 1985).
A slightly modified model for
this covariance matrix is included in the EQS 2.0 manual
(Bentler 1985, p. 28). The path diagram of this model is
displayed in Figure 19.1.
The same model is reanalyzed here by PROC CALIS.
However, for the analysis with the EQS implementation,
the last variable (V6) is rescaled by a factor of 0.1 to
make the matrix less ill-conditioned.
Since the Levenberg-Marquardt or Newton-Raphson
optimization techniques are used with PROC CALIS, rescaling
the data matrix is not necessary and, therefore, is not done here.
The results reported here reflect the estimates based on the
original covariance matrix.
data Wheaton(TYPE=COV);
title "Stability of Alienation";
title2 "Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)";
_type_ = 'cov'; input _name_ $ v1-v6;
label v1='Anomia (1967)' v2='Anomia (1971)' v3='Education'
v4='Powerlessness (1967)' v5='Powerlessness (1971)'
v6='Occupational Status Index';
datalines;
v1 11.834 . . . . .
v2 6.947 9.364 . . . .
v3 6.819 5.091 12.532 . . .
v4 4.783 5.028 7.495 9.986 . .
v5 -3.839 -3.889 -3.841 -3.625 9.610 .
v6 -21.899 -18.831 -21.748 -18.775 35.522 450.288
;
proc calis cov data=Wheaton tech=nr edf=931 pall;
Lineqs
V1 = F1 + E1,
V2 = .833 F1 + E2,
V3 = F2 + E3,
V4 = .833 F2 + E4,
V5 = F3 + E5,
V6 = Lamb (.5) F3 + E6,
F1 = Gam1(-.5) F3 + D1,
F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;
Std
E1-E6 = The1-The2 The1-The4 (6 * 3.),
D1-D2 = Psi1-Psi2 (2 * 4.),
F3 = Phi (6.) ;
Cov
E1 E3 = The5 (.2),
E4 E2 = The5 (.2);
run;
The COV option in the PROC CALIS statement requests
the analysis of the covariance matrix. Without the COV option,
the correlation matrix would be computed and analyzed. Since no
METHOD= option has been used, maximum likelihood estimates
are computed by default. The TECH=NR option requests the
Newton-Raphson optimization method. The PALL option produces
the almost complete set of displayed output, as displayed in
Output 19.1.1 through Output 19.1.11.
Note that, when you specify the PALL option, you can produce large
amounts of output. The PALL option is used in this example to show
how you can get a wide spectrum of useful information from PROC CALIS.
Output 19.1.1 displays the model specification in matrix terms,
followed by the lists of endogenous and exogenous variables. Equations
and initial parameter estimates are also displayed.
You can use this information to ensure that the desired
model is the model being analyzed.
Output 19.1.1: Model Specification
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Pattern and Initial Values |
| LINEQS Model Statement |
| |
Matrix |
Rows |
Columns |
Matrix Type |
| Term 1 |
1 |
_SEL_ |
6 |
17 |
SELECTION |
|
| |
2 |
_BETA_ |
17 |
17 |
EQSBETA |
IMINUSINV |
| |
3 |
_GAMMA_ |
17 |
9 |
EQSGAMMA |
|
| |
4 |
_PHI_ |
9 |
9 |
SYMMETRIC |
|
| The 8 Endogenous Variables |
| Manifest |
v1 v2 v3 v4 v5 v6 |
| Latent |
F1 F2 |
| The 9 Exogenous Variables |
| Manifest |
|
| Latent |
F3 |
| Error |
E1 E2 E3 E4 E5 E6 D1 D2 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Pattern and Initial Values |
| v1 |
= |
1.0000 |
|
F1 |
+ |
1.0000 |
|
E1 |
| v2 |
= |
0.8330 |
|
F1 |
+ |
1.0000 |
|
E2 |
| v3 |
= |
1.0000 |
|
F2 |
+ |
1.0000 |
|
E3 |
| v4 |
= |
0.8330 |
|
F2 |
+ |
1.0000 |
|
E4 |
| v5 |
= |
1.0000 |
|
F3 |
+ |
1.0000 |
|
E5 |
| v6 |
= |
0.5000 |
* |
F3 |
+ |
1.0000 |
|
E6 |
| |
|
|
|
Lamb |
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Pattern and Initial Values |
| F1 |
= |
-0.5000 |
* |
F3 |
+ |
1.0000 |
|
D1 |
|
|
|
|
| |
|
|
|
Gam1 |
|
|
|
|
|
|
|
|
| F2 |
= |
0.5000 |
* |
F1 |
+ |
-0.5000 |
* |
F3 |
+ |
1.0000 |
|
D2 |
| |
|
|
|
Beta |
|
|
|
Gam2 |
|
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Pattern and Initial Values |
Variances of Exogenous Variables |
| Variable |
Parameter |
Estimate |
| F3 |
Phi |
6.00000 |
| E1 |
The1 |
3.00000 |
| E2 |
The2 |
3.00000 |
| E3 |
The1 |
3.00000 |
| E4 |
The2 |
3.00000 |
| E5 |
The3 |
3.00000 |
| E6 |
The4 |
3.00000 |
| D1 |
Psi1 |
4.00000 |
| D2 |
Psi2 |
4.00000 |
Covariances Among Exogenous Variables |
| Var1 |
Var2 |
Parameter |
Estimate |
| E1 |
E3 |
The5 |
0.20000 |
| E2 |
E4 |
The5 |
0.20000 |
|
General modeling information and simple descriptive statistics are
displayed in Output 19.1.2. Because the input data set contains
only the covariance matrix, the means of the manifest variables
are assumed to be zero.
Note that this has no impact on the estimation, unless a mean structure
model is being analyzed.
The twelve parameter estimates in the
model and their respective locations in the parameter matrices are also
displayed. Each of the parameters, The1, The2, and The5,
is specified for two elements in the parameter matrix _PHI_.
Output 19.1.2: Modeling Information, Simple Statistics and Parameter Vector
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Observations |
932 |
Model Terms |
1 |
| Variables |
6 |
Model Matrices |
4 |
| Informations |
21 |
Parameters |
12 |
| Variable |
Mean |
Std Dev |
| v1 |
Anomia (1967) |
0 |
3.44006 |
| v2 |
Anomia (1971) |
0 |
3.06007 |
| v3 |
Education |
0 |
3.54006 |
| v4 |
Powerlessness (1967) |
0 |
3.16006 |
| v5 |
Powerlessness (1971) |
0 |
3.10000 |
| v6 |
Occupational Status Index |
0 |
21.21999 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Covariances |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
| v1 |
Anomia (1967) |
11.83400000 |
6.94700000 |
6.81900000 |
4.78300000 |
-3.83900000 |
-21.8990000 |
| v2 |
Anomia (1971) |
6.94700000 |
9.36400000 |
5.09100000 |
5.02800000 |
-3.88900000 |
-18.8310000 |
| v3 |
Education |
6.81900000 |
5.09100000 |
12.53200000 |
7.49500000 |
-3.84100000 |
-21.7480000 |
| v4 |
Powerlessness (1967) |
4.78300000 |
5.02800000 |
7.49500000 |
9.98600000 |
-3.62500000 |
-18.7750000 |
| v5 |
Powerlessness (1971) |
-3.83900000 |
-3.88900000 |
-3.84100000 |
-3.62500000 |
9.61000000 |
35.5220000 |
| v6 |
Occupational Status Index |
-21.89900000 |
-18.83100000 |
-21.74800000 |
-18.77500000 |
35.52200000 |
450.2880000 |
| Determinant |
6080570 |
Ln |
15.620609 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Vector of Initial Estimates |
| |
Parameter |
Estimate |
Type |
| 1 |
Beta |
0.50000 |
Matrix Entry: _BETA_[8:7] |
| 2 |
Lamb |
0.50000 |
Matrix Entry: _GAMMA_[6:1] |
| 3 |
Gam1 |
-0.50000 |
Matrix Entry: _GAMMA_[7:1] |
| 4 |
Gam2 |
-0.50000 |
Matrix Entry: _GAMMA_[8:1] |
| 5 |
Phi |
6.00000 |
Matrix Entry: _PHI_[1:1] |
| 6 |
The1 |
3.00000 |
Matrix Entry: _PHI_[2:2] _PHI_[4:4] |
| 7 |
The2 |
3.00000 |
Matrix Entry: _PHI_[3:3] _PHI_[5:5] |
| 8 |
The5 |
0.20000 |
Matrix Entry: _PHI_[4:2] _PHI_[5:3] |
| 9 |
The3 |
3.00000 |
Matrix Entry: _PHI_[6:6] |
| 10 |
The4 |
3.00000 |
Matrix Entry: _PHI_[7:7] |
| 11 |
Psi1 |
4.00000 |
Matrix Entry: _PHI_[8:8] |
| 12 |
Psi2 |
4.00000 |
Matrix Entry: _PHI_[9:9] |
|
PROC CALIS examines whether each element in the moment matrix is
modeled by the parameters defined in the model. If an element is not
structured by the model parameters, it is predetermined by its
observed value. This occurs, for example, when there are
exogenous manifest variables in the model. If present, the
predetermined values of the elements will be displayed. In the current
example, the `.' displayed for all elements in the predicted moment matrix
(Output 19.1.3) indicates that there are no predetermined elements in the model.
Output 19.1.3: Predetermined Elements
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Predetermined Elements of the Predicted Moment Matrix |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
| v1 |
Anomia (1967) |
. |
. |
. |
. |
. |
. |
| v2 |
Anomia (1971) |
. |
. |
. |
. |
. |
. |
| v3 |
Education |
. |
. |
. |
. |
. |
. |
| v4 |
Powerlessness (1967) |
. |
. |
. |
. |
. |
. |
| v5 |
Powerlessness (1971) |
. |
. |
. |
. |
. |
. |
| v6 |
Occupational Status Index |
. |
. |
. |
. |
. |
. |
| Sum of Squared Differences |
0 |
|
Output 19.1.4 displays the optimization information.
You can check this table to determine whether the
convergence criterion is satisfied. PROC CALIS displays an
error message when problematic solutions are encountered.
Output 19.1.4: Optimization
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Parameter Estimates |
12 |
| Functions (Observations) |
21 |
| Optimization Start |
| Active Constraints |
0 |
Objective Function |
119.33282242 |
| Max Abs Gradient Element |
74.016932345 |
|
|
| Iteration |
|
Restarts |
Function Calls |
Active Constraints |
|
Objective Function |
Objective Function Change |
Max Abs Gradient Element |
Ridge |
Ratio Between Actual and Predicted Change |
| 1 |
|
0 |
2 |
0 |
|
0.82689 |
118.5 |
1.3507 |
0 |
0.0154 |
| 2 |
|
0 |
3 |
0 |
|
0.09859 |
0.7283 |
0.2330 |
0 |
0.716 |
| 3 |
|
0 |
4 |
0 |
|
0.01581 |
0.0828 |
0.00684 |
0 |
1.285 |
| 4 |
|
0 |
5 |
0 |
|
0.01449 |
0.00132 |
0.000286 |
0 |
1.042 |
| 5 |
|
0 |
6 |
0 |
|
0.01448 |
9.936E-7 |
0.000045 |
0 |
1.053 |
| 6 |
|
0 |
7 |
0 |
|
0.01448 |
4.227E-9 |
1.685E-6 |
0 |
1.056 |
| Optimization Results |
| Iterations |
6 |
Function Calls |
8 |
| Jacobian Calls |
7 |
Active Constraints |
0 |
| Objective Function |
0.0144844811 |
Max Abs Gradient Element |
1.6847829E-6 |
| Ridge |
0 |
Actual Over Pred Change |
1.0563187228 |
| ABSGCONV convergence criterion satisfied. |
|
The predicted model matrix is displayed next, followed by a list of model
test statistics or fit indices (Output 19.1.5).
Depending on your modeling
philosophy, some indices may be preferred to others. In this example,
all indices and test statistics point to a good fit of the model.
Output 19.1.5: Predicted Model Matrix and Fit Statistics
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Predicted Model Matrix |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
| v1 |
Anomia (1967) |
11.90390632 |
6.91059048 |
6.83016211 |
4.93499582 |
-4.16791157 |
-22.3768816 |
| v2 |
Anomia (1971) |
6.91059048 |
9.35145064 |
4.93499582 |
5.01664889 |
-3.47187034 |
-18.6399424 |
| v3 |
Education |
6.83016211 |
4.93499582 |
12.61574998 |
7.50355625 |
-4.06565606 |
-21.8278873 |
| v4 |
Powerlessness (1967) |
4.93499582 |
5.01664889 |
7.50355625 |
9.84539112 |
-3.38669150 |
-18.1826302 |
| v5 |
Powerlessness (1971) |
-4.16791157 |
-3.47187034 |
-4.06565606 |
-3.38669150 |
9.61000000 |
35.5219999 |
| v6 |
Occupational Status Index |
-22.37688158 |
-18.63994236 |
-21.82788734 |
-18.18263015 |
35.52199986 |
450.2879993 |
| Determinant |
6169285 |
Ln |
15.635094 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Fit Function |
0.0145 |
| Goodness of Fit Index (GFI) |
0.9953 |
| GFI Adjusted for Degrees of Freedom (AGFI) |
0.9890 |
| Root Mean Square Residual (RMR) |
0.2281 |
| Parsimonious GFI (Mulaik, 1989) |
0.5972 |
| Chi-Square |
13.4851 |
| Chi-Square DF |
9 |
| Pr > Chi-Square |
0.1419 |
| Independence Model Chi-Square |
2131.4 |
| Independence Model Chi-Square DF |
15 |
| RMSEA Estimate |
0.0231 |
| RMSEA 90% Lower Confidence Limit |
. |
| RMSEA 90% Upper Confidence Limit |
0.0470 |
| ECVI Estimate |
0.0405 |
| ECVI 90% Lower Confidence Limit |
. |
| ECVI 90% Upper Confidence Limit |
0.0556 |
| Probability of Close Fit |
0.9705 |
| Bentler's Comparative Fit Index |
0.9979 |
| Normal Theory Reweighted LS Chi-Square |
13.2804 |
| Akaike's Information Criterion |
-4.5149 |
| Bozdogan's (1987) CAIC |
-57.0509 |
| Schwarz's Bayesian Criterion |
-48.0509 |
| McDonald's (1989) Centrality |
0.9976 |
| Bentler & Bonett's (1980) Non-normed Index |
0.9965 |
| Bentler & Bonett's (1980) NFI |
0.9937 |
| James, Mulaik, & Brett (1982) Parsimonious NFI |
0.5962 |
| Z-Test of Wilson & Hilferty (1931) |
1.0754 |
| Bollen (1986) Normed Index Rho1 |
0.9895 |
| Bollen (1988) Non-normed Index Delta2 |
0.9979 |
| Hoelter's (1983) Critical N |
1170 |
|
PROC CALIS can perform a detailed residual analysis. Large
residuals may indicate misspecification of the model.
In Output 19.1.6 for example, note the table for the 10 largest
asymptotically standardized residuals. As the table shows, the
specified model performs the poorest concerning the variable V5 and its
covariance with V2, V1, and V3.
This may
be the result of a misspecification of the model equation for V5. However,
because the model fit is quite good, such a possible misspecification
may have no practical significance and is not a serious concern in the
analysis.
Output 19.1.6: Residual Analysis
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Raw Residual Matrix |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
| v1 |
Anomia (1967) |
-.0699063150 |
0.0364095216 |
-.0111621061 |
-.1519958205 |
0.3289115712 |
0.4778815840 |
| v2 |
Anomia (1971) |
0.0364095216 |
0.0125493646 |
0.1560041795 |
0.0113511059 |
-.4171296612 |
-.1910576405 |
| v3 |
Education |
-.0111621061 |
0.1560041795 |
-.0837499788 |
-.0085562504 |
0.2246560598 |
0.0798873380 |
| v4 |
Powerlessness (1967) |
-.1519958205 |
0.0113511059 |
-.0085562504 |
0.1406088766 |
-.2383085022 |
-.5923698474 |
| v5 |
Powerlessness (1971) |
0.3289115712 |
-.4171296612 |
0.2246560598 |
-.2383085022 |
0.0000000000 |
0.0000000000 |
| v6 |
Occupational Status Index |
0.4778815840 |
-.1910576405 |
0.0798873380 |
-.5923698474 |
0.0000000000 |
0.0000000000 |
| Average Absolute Residual |
0.153928 |
| Average Off-diagonal Absolute Residual |
0.195045 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Rank Order of the 10 Largest Raw Residuals |
| Row |
Column |
Residual |
| v6 |
v4 |
-0.59237 |
| v6 |
v1 |
0.47788 |
| v5 |
v2 |
-0.41713 |
| v5 |
v1 |
0.32891 |
| v5 |
v4 |
-0.23831 |
| v5 |
v3 |
0.22466 |
| v6 |
v2 |
-0.19106 |
| v3 |
v2 |
0.15600 |
| v4 |
v1 |
-0.15200 |
| v4 |
v4 |
0.14061 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Asymptotically Standardized Residual Matrix |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
| v1 |
Anomia (1967) |
-0.308548787 |
0.526654452 |
-0.056188826 |
-0.865070455 |
2.553366366 |
0.464866661 |
| v2 |
Anomia (1971) |
0.526654452 |
0.054363484 |
0.876120855 |
0.057354415 |
-2.763708659 |
-0.170127806 |
| v3 |
Education |
-0.056188826 |
0.876120855 |
-0.354347092 |
-0.121874301 |
1.697931678 |
0.070202664 |
| v4 |
Powerlessness (1967) |
-0.865070455 |
0.057354415 |
-0.121874301 |
0.584930625 |
-1.557412695 |
-0.495982427 |
| v5 |
Powerlessness (1971) |
2.553366366 |
-2.763708659 |
1.697931678 |
-1.557412695 |
0.000000000 |
0.000000000 |
| v6 |
Occupational Status Index |
0.464866661 |
-0.170127806 |
0.070202664 |
-0.495982427 |
0.000000000 |
0.000000000 |
| Average Standardized Residual |
0.646622 |
| Average Off-diagonal Standardized Residual |
0.818457 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Rank Order of the 10 Largest Asymptotically Standardized Residuals |
| Row |
Column |
Residual |
| v5 |
v2 |
-2.76371 |
| v5 |
v1 |
2.55337 |
| v5 |
v3 |
1.69793 |
| v5 |
v4 |
-1.55741 |
| v3 |
v2 |
0.87612 |
| v4 |
v1 |
-0.86507 |
| v4 |
v4 |
0.58493 |
| v2 |
v1 |
0.52665 |
| v6 |
v4 |
-0.49598 |
| v6 |
v1 |
0.46487 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Distribution of Asymptotically Standardized Residuals |
| Each * Represents 1 Residuals |
| Range |
Freq |
Percent |
|
| -3.00000 |
-2.75000 |
1 |
4.76 |
* |
| -2.75000 |
-2.50000 |
0 |
0.00 |
|
| -2.50000 |
-2.25000 |
0 |
0.00 |
|
| -2.25000 |
-2.00000 |
0 |
0.00 |
|
| -2.00000 |
-1.75000 |
0 |
0.00 |
|
| -1.75000 |
-1.50000 |
1 |
4.76 |
* |
| -1.50000 |
-1.25000 |
0 |
0.00 |
|
| -1.25000 |
-1.00000 |
0 |
0.00 |
|
| -1.00000 |
-0.75000 |
1 |
4.76 |
* |
| -0.75000 |
-0.50000 |
0 |
0.00 |
|
| -0.50000 |
-0.25000 |
3 |
14.29 |
*** |
| -0.25000 |
0 |
3 |
14.29 |
*** |
| 0 |
0.25000 |
6 |
28.57 |
****** |
| 0.25000 |
0.50000 |
1 |
4.76 |
* |
| 0.50000 |
0.75000 |
2 |
9.52 |
** |
| 0.75000 |
1.00000 |
1 |
4.76 |
* |
| 1.00000 |
1.25000 |
0 |
0.00 |
|
| 1.25000 |
1.50000 |
0 |
0.00 |
|
| 1.50000 |
1.75000 |
1 |
4.76 |
* |
| 1.75000 |
2.00000 |
0 |
0.00 |
|
| 2.00000 |
2.25000 |
0 |
0.00 |
|
| 2.25000 |
2.50000 |
0 |
0.00 |
|
| 2.50000 |
2.75000 |
1 |
4.76 |
* |
|
Output 19.1.7 displays the equations and parameter estimates.
Each parameter estimate is displayed with its standard
error and the corresponding t ratio.
As a general rule, a t ratio
larger than 2 represents a statistically significant departure from 0.
From these results, it is observed that both F1 (Alienation 1967) and
F2 (Alienation 1971) are regressed negatively on F3 (Socioeconomic
Status), and F1 has a positive effect on F2. The estimates and
significance tests for the variance and covariance of the exogenous
variables are also displayed.
Output 19.1.7: Equations and Parameter Estimates
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| v1 |
= |
1.0000 |
|
F1 |
+ |
1.0000 |
|
E1 |
| v2 |
= |
0.8330 |
|
F1 |
+ |
1.0000 |
|
E2 |
| v3 |
= |
1.0000 |
|
F2 |
+ |
1.0000 |
|
E3 |
| v4 |
= |
0.8330 |
|
F2 |
+ |
1.0000 |
|
E4 |
| v5 |
= |
1.0000 |
|
F3 |
+ |
1.0000 |
|
E5 |
| v6 |
= |
5.3688 |
* |
F3 |
+ |
1.0000 |
|
E6 |
| Std Err |
|
0.4337 |
|
Lamb |
|
|
|
|
| t Value |
|
12.3788 |
|
|
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| F1 |
= |
-0.6299 |
* |
F3 |
+ |
1.0000 |
|
D1 |
|
|
|
|
| Std Err |
|
0.0563 |
|
Gam1 |
|
|
|
|
|
|
|
|
| t Value |
|
-11.1809 |
|
|
|
|
|
|
|
|
|
|
| F2 |
= |
0.5931 |
* |
F1 |
+ |
-0.2409 |
* |
F3 |
+ |
1.0000 |
|
D2 |
| Std Err |
|
0.0468 |
|
Beta |
|
0.0549 |
|
Gam2 |
|
|
|
|
| t Value |
|
12.6788 |
|
|
|
-4.3885 |
|
|
|
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Variances of Exogenous Variables |
| Variable |
Parameter |
Estimate |
Standard Error |
t Value |
| F3 |
Phi |
6.61632 |
0.63914 |
10.35 |
| E1 |
The1 |
3.60788 |
0.20092 |
17.96 |
| E2 |
The2 |
3.59493 |
0.16448 |
21.86 |
| E3 |
The1 |
3.60788 |
0.20092 |
17.96 |
| E4 |
The2 |
3.59493 |
0.16448 |
21.86 |
| E5 |
The3 |
2.99368 |
0.49861 |
6.00 |
| E6 |
The4 |
259.57580 |
18.31150 |
14.18 |
| D1 |
Psi1 |
5.67047 |
0.42301 |
13.41 |
| D2 |
Psi2 |
4.51480 |
0.33532 |
13.46 |
| Covariances Among Exogenous Variables |
| Var1 |
Var2 |
Parameter |
Estimate |
Standard Error |
t Value |
| E1 |
E3 |
The5 |
0.90580 |
0.12167 |
7.44 |
| E2 |
E4 |
The5 |
0.90580 |
0.12167 |
7.44 |
|
The measurement scale of variables is often arbitrary. Therefore,
it can be useful to look at the standardized equations produced by PROC
CALIS. Output 19.1.8 displays the standardized equations and predicted
moments. From the standardized structural equations for F1 and
F2,
you can conclude that SES (F3) has a larger impact on earlier
Alienation (F1) than on later Alienation (F3).
The squared multiple correlation for each equation, the correlation
among the exogenous variables, and the covariance matrices among the
latent variables and between the observed and the latent variables
help to describe the relationships among all variables.
Output 19.1.8: Standardized Equations and Predicted Moments
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| v1 |
= |
0.8348 |
|
F1 |
+ |
0.5505 |
|
E1 |
| v2 |
= |
0.7846 |
|
F1 |
+ |
0.6200 |
|
E2 |
| v3 |
= |
0.8450 |
|
F2 |
+ |
0.5348 |
|
E3 |
| v4 |
= |
0.7968 |
|
F2 |
+ |
0.6043 |
|
E4 |
| v5 |
= |
0.8297 |
|
F3 |
+ |
0.5581 |
|
E5 |
| v6 |
= |
0.6508 |
* |
F3 |
+ |
0.7593 |
|
E6 |
| |
|
|
|
Lamb |
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| F1 |
= |
-0.5626 |
* |
F3 |
+ |
0.8268 |
|
D1 |
|
|
|
|
| |
|
|
|
Gam1 |
|
|
|
|
|
|
|
|
| F2 |
= |
0.5692 |
* |
F1 |
+ |
-0.2064 |
* |
F3 |
+ |
0.7080 |
|
D2 |
| |
|
|
|
Beta |
|
|
|
Gam2 |
|
|
|
|
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Squared Multiple Correlations |
| |
Variable |
Error Variance |
Total Variance |
R-Square |
| 1 |
v1 |
3.60788 |
11.90391 |
0.6969 |
| 2 |
v2 |
3.59493 |
9.35145 |
0.6156 |
| 3 |
v3 |
3.60788 |
12.61575 |
0.7140 |
| 4 |
v4 |
3.59493 |
9.84539 |
0.6349 |
| 5 |
v5 |
2.99368 |
9.61000 |
0.6885 |
| 6 |
v6 |
259.57580 |
450.28800 |
0.4235 |
| 7 |
F1 |
5.67047 |
8.29603 |
0.3165 |
| 8 |
F2 |
4.51480 |
9.00787 |
0.4988 |
Correlations Among Exogenous Variables |
| Var1 |
Var2 |
Parameter |
Estimate |
| E1 |
E3 |
The5 |
0.25106 |
| E2 |
E4 |
The5 |
0.25197 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Predicted Moments of Latent Variables |
| |
F1 |
F2 |
F3 |
| F1 |
8.296026985 |
5.924364730 |
-4.167911571 |
| F2 |
5.924364730 |
9.007870649 |
-4.065656060 |
| F3 |
-4.167911571 |
-4.065656060 |
6.616317547 |
Predicted Moments between Manifest and Latent Variables |
| |
F1 |
F2 |
F3 |
| v1 |
8.29602698 |
5.92436473 |
-4.16791157 |
| v2 |
6.91059048 |
4.93499582 |
-3.47187034 |
| v3 |
5.92436473 |
9.00787065 |
-4.06565606 |
| v4 |
4.93499582 |
7.50355625 |
-3.38669150 |
| v5 |
-4.16791157 |
-4.06565606 |
6.61631755 |
| v6 |
-22.37688158 |
-21.82788734 |
35.52199986 |
|
Output 19.1.9 displays the latent variable score regression
coefficients that produce the latent variable scores. Each latent
variable is expressed as a linear combination of the observed
variables. See Chapter 57, "The SCORE Procedure," for more information on the creation of latent variable
scores. Note that the total effects and indirect effects of the exogenous
variables are also displayed.
Output 19.1.9: Latent Variable Score Regression, Direct and Indirect Effects
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Latent Variable Score Regression Coefficients |
| |
F1 |
F2 |
F3 |
| v1 |
Anomia (1967) |
0.4131113567 |
0.0482681051 |
-.0521264408 |
| v2 |
Anomia (1971) |
0.3454029627 |
0.0400143300 |
-.0435560637 |
| v3 |
Education |
0.0526632293 |
0.4306175653 |
-.0399927539 |
| v4 |
Powerlessness (1967) |
0.0437036855 |
0.3600452776 |
-.0334000265 |
| v5 |
Powerlessness (1971) |
-.0749215200 |
-.0639697183 |
0.5057060770 |
| v6 |
Occupational Status Index |
-.0046390513 |
-.0039609288 |
0.0313127184 |
| Total Effects |
| |
F3 |
F1 |
F2 |
| v1 |
-0.629944307 |
1.000000000 |
0.000000000 |
| v2 |
-0.524743608 |
0.833000000 |
0.000000000 |
| v3 |
-0.614489258 |
0.593112208 |
1.000000000 |
| v4 |
-0.511869552 |
0.494062469 |
0.833000000 |
| v5 |
1.000000000 |
0.000000000 |
0.000000000 |
| v6 |
5.368847492 |
0.000000000 |
0.000000000 |
| F1 |
-0.629944307 |
0.000000000 |
0.000000000 |
| F2 |
-0.614489258 |
0.593112208 |
0.000000000 |
| Indirect Effects |
| |
F3 |
F1 |
F2 |
| v1 |
-.6299443069 |
0.0000000000 |
0 |
| v2 |
-.5247436076 |
0.0000000000 |
0 |
| v3 |
-.6144892580 |
0.5931122083 |
0 |
| v4 |
-.5118695519 |
0.4940624695 |
0 |
| v5 |
0.0000000000 |
0.0000000000 |
0 |
| v6 |
0.0000000000 |
0.0000000000 |
0 |
| F1 |
0.0000000000 |
0.0000000000 |
0 |
| F2 |
-.3736276589 |
0.0000000000 |
0 |
|
PROC CALIS can display Lagrange multiplier and Wald statistics for
model modifications. Modification indices are displayed for each
parameter matrix. Only the Lagrange multiplier statistics have
significance levels and approximate changes of values displayed. The
significance level of the Wald statistic for a given parameter is
the same as that shown in the equation output. An insignificant p-value for
a Wald statistic means that the corresponding parameter can be
dropped from the model without significantly worsening the fit of the model.
A significant p-value for a Lagrange multiplier test indicates that
the model would achieve a better fit if the corresponding parameter is
free. To aid in determining significant results, PROC CALIS displays
the rank order of the ten largest Lagrange multiplier statistics. For
example, [E5:E2] in the _PHI_ matrix is associated with the largest
Lagrange multiplier statistic; the associated p-value is 0.0067. This means that
adding a parameter for the covariance between E5 and E2 will lead to a
significantly better fit of the model.
However,
adding parameters indiscriminately can result in specification
errors.
An over-fitted model may not perform well with future samples.
As always, the decision to add
parameters should be accompanied with consideration and knowledge of
the application area.
Output 19.1.10: Lagrange Multiplier and Wald Tests
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
Lagrange Multiplier and Wald Test Indices _PHI_[9:9] Symmetric Matrix Univariate Tests for Constant Constraints Lagrange Multiplier or Wald Index / Probability / Approx Change of Value |
| |
F3 |
E1 |
E2 |
E3 |
E4 |
E5 |
E6 |
D1 |
D2 |
| F3 |
107.1619
.
.
[Phi] |
3.3903
0.0656
0.5079
|
3.3901
0.0656
-0.4231
|
0.5752
0.4482
0.2090
|
0.5753
0.4482
-0.1741
|
.
.
.
Sing |
.
.
.
Sing |
.
.
.
Sing |
.
.
.
Sing |
| E1 |
3.3903
0.0656
0.5079
|
322.4501
.
.
[The1] |
0.1529
0.6958
0.0900
|
55.4237
.
.
[The5] |
1.2037
0.2726
-0.3262
|
5.8025
0.0160
0.5193
|
0.7398
0.3897
-1.2587
|
0.4840
0.4866
0.2276
|
0.0000
0.9961
0.0014
|
| E2 |
3.3901
0.0656
-0.4231
|
0.1529
0.6958
0.0900
|
477.6768
.
.
[The2] |
0.5946
0.4406
0.2328
|
55.4237
.
.
[The5] |
7.3649
0.0067
-0.5060
|
1.4168
0.2339
1.5431
|
0.4840
0.4866
-0.1896
|
0.0000
0.9961
-0.0011
|
| E3 |
0.5752
0.4482
0.2090
|
55.4237
.
.
[The5] |
0.5946
0.4406
0.2328
|
322.4501
.
.
[The1] |
0.1528
0.6958
-0.0900
|
1.5982
0.2062
0.2709
|
0.0991
0.7529
-0.4579
|
1.1825
0.2768
0.2984
|
0.5942
0.4408
-0.2806
|
| E4 |
0.5753
0.4482
-0.1741
|
1.2037
0.2726
-0.3262
|
55.4237
.
.
[The5] |
0.1528
0.6958
-0.0900
|
477.6768
.
.
[The2] |
1.2044
0.2724
-0.2037
|
0.0029
0.9568
0.0700
|
1.1825
0.2768
-0.2486
|
0.5942
0.4408
0.2338
|
| E5 |
.
.
.
Sing |
5.8025
0.0160
0.5193
|
7.3649
0.0067
-0.5060
|
1.5982
0.2062
0.2709
|
1.2044
0.2724
-0.2037
|
36.0486
.
.
[The3] |
.
.
.
Sing |
0.1033
0.7479
-0.2776
|
0.1035
0.7477
0.1062
|
| E6 |
.
.
.
Sing |
0.7398
0.3897
-1.2587
|
1.4168
0.2339
1.5431
|
0.0991
0.7529
-0.4579
|
0.0029
0.9568
0.0700
|
.
.
.
Sing |
200.9466
.
.
[The4] |
0.1034
0.7478
1.4906
|
0.1035
0.7477
-0.5700
|
| D1 |
.
.
.
Sing |
0.4840
0.4866
0.2276
|
0.4840
0.4866
-0.1896
|
1.1825
0.2768
0.2984
|
1.1825
0.2768
-0.2486
|
0.1033
0.7479
-0.2776
|
0.1034
0.7478
1.4906
|
179.6950
.
.
[Psi1] |
.
.
.
Sing |
| D2 |
.
.
.
Sing |
0.0000
0.9961
0.0014
|
0.0000
0.9961
-0.0011
|
0.5942
0.4408
-0.2806
|
0.5942
0.4408
0.2338
|
0.1035
0.7477
0.1062
|
0.1035
0.7477
-0.5700
|
.
.
.
Sing |
181.2787
.
.
[Psi2] |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Rank Order of the 10 Largest Lagrange Multipliers in _PHI_ |
| Row |
Column |
Chi-Square |
Pr > ChiSq |
| E5 |
E2 |
7.36486 |
0.0067 |
| E5 |
E1 |
5.80246 |
0.0160 |
| E1 |
F3 |
3.39030 |
0.0656 |
| E2 |
F3 |
3.39013 |
0.0656 |
| E5 |
E3 |
1.59820 |
0.2062 |
| E6 |
E2 |
1.41677 |
0.2339 |
| E5 |
E4 |
1.20437 |
0.2724 |
| E4 |
E1 |
1.20367 |
0.2726 |
| D1 |
E3 |
1.18251 |
0.2768 |
| D1 |
E4 |
1.18249 |
0.2768 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
Lagrange Multiplier and Wald Test Indices _GAMMA_[8:1] General Matrix Univariate Tests for Constant Constraints Lagrange Multiplier or Wald Index / Probability / Approx Change of Value |
| |
F3 |
| v1 |
3.3903
0.0656
0.0768
|
| v2 |
3.3901
0.0656
-0.0639
|
| v3 |
0.5752
0.4482
0.0316
|
| v4 |
0.5753
0.4482
-0.0263
|
| v5 |
.
.
.
Sing |
| v6 |
153.2354
.
.
[Lamb] |
| F1 |
125.0132
.
.
[Gam1] |
| F2 |
19.2585
.
.
[Gam2] |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Rank Order of the 4 Largest Lagrange Multipliers in _GAMMA_ |
| Row |
Column |
Chi-Square |
Pr > ChiSq |
| v1 |
F3 |
3.39030 |
0.0656 |
| v2 |
F3 |
3.39013 |
0.0656 |
| v4 |
F3 |
0.57526 |
0.4482 |
| v3 |
F3 |
0.57523 |
0.4482 |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
Lagrange Multiplier and Wald Test Indices _BETA_[8:8] General Matrix Identity-Minus-Inverse Model Matrix Univariate Tests for Constant Constraints Lagrange Multiplier or Wald Index / Probability / Approx Change of Value |
| |
v1 |
v2 |
v3 |
v4 |
v5 |
v6 |
F1 |
F2 |
| v1 |
.
.
.
Sing |
0.1647
0.6849
-0.0159
|
0.0511
0.8212
-0.0063
|
0.8029
0.3702
-0.0284
|
5.4083
0.0200
0.0697
|
0.1233
0.7255
0.0015
|
0.4047
0.5247
-0.0257
|
0.4750
0.4907
-0.0239
|
| v2 |
0.5957
0.4402
0.0218
|
.
.
.
Sing |
0.6406
0.4235
0.0185
|
0.0135
0.9076
0.0032
|
5.8858
0.0153
-0.0609
|
0.0274
0.8686
-0.0006
|
0.4047
0.5247
0.0214
|
0.4750
0.4907
0.0199
|
| v3 |
0.3839
0.5355
0.0178
|
0.3027
0.5822
0.0180
|
.
.
.
Sing |
0.1446
0.7038
-0.0145
|
1.1537
0.2828
0.0322
|
0.0296
0.8634
0.0007
|
0.1588
0.6902
0.0144
|
0.0817
0.7750
-0.0110
|
| v4 |
0.4487
0.5030
-0.0160
|
0.2519
0.6157
-0.0144
|
0.0002
0.9877
-0.0004
|
.
.
.
Sing |
0.9867
0.3206
-0.0249
|
0.1442
0.7041
-0.0014
|
0.1588
0.6903
-0.0120
|
0.0817
0.7750
0.0092
|
| v5 |
5.4085
0.0200
0.1242
|
8.6455
0.0033
-0.1454
|
2.7123
0.0996
0.0785
|
2.1457
0.1430
-0.0674
|
.
.
.
Sing |
.
.
.
Sing |
0.1033
0.7479
-0.0490
|
0.1035
0.7476
0.0329
|
| v6 |
0.4209
0.5165
-0.2189
|
1.4387
0.2304
0.3924
|
0.3044
0.5811
-0.1602
|
0.0213
0.8841
0.0431
|
.
.
.
Sing |
.
.
.
Sing |
0.1034
0.7478
0.2629
|
0.1035
0.7477
-0.1765
|
| F1 |
1.0998
0.2943
0.0977
|
1.1021
0.2938
-0.0817
|
1.6114
0.2043
0.0993
|
1.6128
0.2041
-0.0831
|
0.1032
0.7480
-0.0927
|
0.1035
0.7477
0.0057
|
.
.
.
Sing |
.
.
.
Sing |
| F2 |
0.0193
0.8896
-0.0104
|
0.0194
0.8892
0.0087
|
0.4765
0.4900
-0.0625
|
0.4760
0.4902
0.0522
|
0.1034
0.7477
0.0355
|
0.1035
0.7477
-0.0022
|
160.7520
.
.
[Beta] |
.
.
.
Sing |
|
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
| Rank Order of the 10 Largest Lagrange Multipliers in _BETA_ |
| Row |
Column |
Chi-Square |
Pr > ChiSq |
| v5 |
v2 |
8.64546 |
0.0033 |
| v2 |
v5 |
5.88576 |
0.0153 |
| v5 |
v1 |
5.40848 |
0.0200 |
| v1 |
v5 |
5.40832 |
0.0200 |
| v5 |
v3 |
2.71233 |
0.0996 |
| v5 |
v4 |
2.14572 |
0.1430 |
| F1 |
v4 |
1.61279 |
0.2041 |
| F1 |
v3 |
1.61137 |
0.2043 |
| v6 |
v2 |
1.43867 |
0.2304 |
| v3 |
v5 |
1.15372 |
0.2828 |
|
When you specify equality constraints, PROC CALIS displays Lagrange
multiplier tests for releasing the constraints.
In the current example, none of the three constraints
achieve a p-value smaller than 0.05. This means that releasing the
constraints may not lead to a significantly better fit of the
model. Therefore, all constraints are retained in the model.
Output 19.1.11: Tests for Equality Constraints
| Stability of Alienation |
| Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977) |
| The CALIS Procedure |
| Covariance Structure Analysis: Maximum Likelihood Estimation |
Univariate Lagrange Multiplier Test for Releasing Equality Constraints |
| Equality Constraint |
Changes |
Chi-Square |
Pr > ChiSq |
| [E1:E1] = [E3:E3] |
0.0293 |
-0.0308 |
0.02106 |
0.8846 |
| [E2:E2] = [E4:E4] |
-0.1342 |
0.1388 |
0.69488 |
0.4045 |
| [E3:E1] = [E4:E2] |
0.2468 |
-0.1710 |
1.29124 |
0.2558 |
|
The model is specified using the LINEQS, STD, and COV statements.
The section "Getting Started" also contains
the COSAN and RAM specifications of this model.
These model specifications would give essentially the same results.
proc calis cov data=Wheaton tech=nr edf=931;
Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);
Matrix A
[ ,7] = 1. .833 5 * 0. Beta (.5) ,
[ ,8] = 2 * 0. 1. .833 ,
[ ,9] = 4 * 0. 1. Lamb Gam1-Gam2 (.5 2 * -.5);
Matrix P
[1,1] = The1-The2 The1-The4 (6 * 3.) ,
[7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,
[3,1] = The5 (.2) ,
[4,2] = The5 (.2) ;
Vnames J V1-V6 F1-F3 ,
A = J ,
P E1-E6 D1-D3 ;
run;
proc calis cov data=Wheaton tech=nr edf=931;
Ram
1 1 7 1. ,
1 2 7 .833 ,
1 3 8 1. ,
1 4 8 .833 ,
1 5 9 1. ,
1 6 9 .5 Lamb ,
1 7 9 -.5 Gam1 ,
1 8 7 .5 Beta ,
1 8 9 -.5 Gam2 ,
2 1 1 3. The1 ,
2 2 2 3. The2 ,
2 3 3 3. The1 ,
2 4 4 3. The2 ,
2 5 5 3. The3 ,
2 6 6 3. The4 ,
2 1 3 .2 The5 ,
2 2 4 .2 The5 ,
2 7 7 4. Psi1 ,
2 8 8 4. Psi2 ,
2 9 9 6. Phi ;
Vnames 1 F1-F3,
2 E1-E6 D1-D3;
run;
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.