next up previous
Postscript version of this page

STAT 801: Mathematical Statistics

The Multivariate Normal Distribution

Def'n: $ Z \in R^1 \sim N(0,1)$ iff

$\displaystyle f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}
$

Def'n: $ Z \in R^p \sim MVN(0,I)$ if and only if $ Z=(Z_1,\ldots,Z_p)^t$ with the $ Z_i$ independent and each $ Z_i\sim N(0,1)$.

In this case according to our theorem

$\displaystyle f_Z(z_1,\ldots,z_p)$ $\displaystyle = \prod \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$    
  $\displaystyle = (2\pi)^{-p/2} \exp\{ -z^t z/2\} \, ;$    

superscript $ t$ denotes matrix transpose.

Def'n: $ X\in R^p$ has a multivariate normal distribution if it has the same distribution as $ AZ+\mu$ for some $ \mu\in R^p$, some $ p\times p$ matrix of constants $ A$ and $ Z\sim MVN(0,I)$.

If the matrix $ A$ is singular then $ X$ will not have a density.

If $ A$ is invertible then we can derive the multivariate normal density by the change of variables formula:

$\displaystyle X=AZ+\mu \Leftrightarrow Z=A^{-1}(X-\mu)
$

$\displaystyle \frac{\partial X}{\partial Z} = A \qquad \frac{\partial Z}{\partial X } =
A^{-1} \, .
$

So

$\displaystyle f_X(x)$ $\displaystyle = f_Z(A^{-1}(x-\mu)) \vert \det(A^{-1})\vert$    
  $\displaystyle = \frac{ \exp\{-(x-\mu)^t (A^{-1})^t A^{-1} (x-\mu)/2\} }{(2\pi)^{p/2} \vert\det{A}\vert } \, .$    

Now define $ \Sigma=AA^t$ and notice that

$\displaystyle \Sigma^{-1} = (A^t)^{-1} A^{-1} = (A^{-1})^t A^{-1}
$

and

$\displaystyle \det \Sigma = \det A \det A^t = (\det A)^2 \, .
$

Thus $ f_X$ is

$\displaystyle \frac{
\exp\{ -(x-\mu)^t \Sigma^{-1}
(x-\mu) /2 \}}{
(2\pi)^{p/2} (\det\Sigma)^{1/2} }
\, ;
$

the $ MVN(\mu,\Sigma)$ density.

Note density is the same for all $ A$ such that $ AA^t=\Sigma$. This justifies the notation $ MVN(\mu,\Sigma)$.

For which vectors $ \mu$ and matrices $ \Sigma$ is this a density? Any $ \mu$ but if $ x \in R^p$ then

$\displaystyle x^t \Sigma x$ $\displaystyle = x^t A A^t x$    
  $\displaystyle = (A^t x)^t (A^t x)$    
  $\displaystyle = \sum_1^p y_i^2 \ge 0$    

where $ y=A^t x$.

Inequality strict except for $ y=0$ which is equivalent to $ x=0$. Thus $ \Sigma$ is a positive definite symmetric matrix.

Conversely, if $ \Sigma$ is a positive definite symmetric matrix then there is a square invertible matrix $ A$ such that $ AA^t=\Sigma$ so that there is a $ MVN(\mu,\Sigma)$ distribution. ($ A$ can be found via the Cholesky decomposition, e.g.)

More generally $ X$ has MVN distribution if it has the same distribution as $ AZ+\mu$ (no restriction that $ A$ be non-singular). When $ A$ is singular $ X$ will not have a density: $ \exists a$ such that $ P(a^t X = a^t
\mu) =1$; $ X$ is confined to a hyperplane. Still true that the distribution of $ X$ depends only on the matrix $ \Sigma=AA^t$: if $ AA^t = BB^t$ then $ AZ+\mu$ and $ BZ+\mu$ have the same distribution.

Properties of the $ MVN$ distribution

1: All margins are multivariate normal: if

$\displaystyle X = \left[\begin{array}{c} X_1\\  X_2\end{array} \right]
$

$\displaystyle \mu = \left[\begin{array}{c} \mu_1\\  \mu_2\end{array} \right]
$

and

$\displaystyle \Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12}
\\
\Sigma_{21} & \Sigma_{22} \end{array} \right]
$

then $ X\sim MVN(\mu,\Sigma) \Rightarrow X_1\sim MVN(\mu_1,\Sigma_{11})$.

2: All conditionals are normal: the conditional distribution of $ X_1$ given $ X_2=x_2$ is

$\displaystyle MVN(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}
(x_2-\mu_2),\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})\, .$

3: $ MX+\nu \sim MVN(M\mu+\nu, M \Sigma M^t)$: affine transformation of MVN is normal.

next up previous



Richard Lockhart
2001-01-05