next up previous
Postscript version of this page

STAT 801: Mathematical Statistics

Normal samples: Distribution Theory

Theorem: Suppose $ X_1,\ldots,X_n$ are independent $ N(\mu,\sigma^2)$ random variables. Then

  1. $ \bar X$ (sample mean)and $ s^2$ (sample variance) independent.

  2. $ n^{1/2}(\bar{X} - \mu)/\sigma \sim N(0,1)$.

  3. $ (n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$.

  4. $ n^{1/2}(\bar{X} - \mu)/s \sim t_{n-1}$.

Proof: Let $ Z_i=(X_i-\mu)/\sigma$.

Then $ Z_1,\ldots,Z_p$ are independent $ N(0,1)$.

So $ Z=(Z_1,\ldots,Z_p)^t$ is multivariate standard normal.

Note that $ \bar{X} = \sigma\bar{Z}+\mu$ and $ s^2 = \sum(X_i-\bar{X})^2/(n-1) = \sigma^2 \sum(Z_i-\bar{Z})^2/(n-1)$ Thus

$\displaystyle \frac{n^{1/2}(\bar{X}-\mu)}{\sigma} = n^{1/2}\bar{Z}
$

$\displaystyle \frac{(n-1)s^2}{\sigma^2} = \sum(Z_i-\bar{Z})^2
$

and

$\displaystyle T=\frac{n^{1/2}(\bar{X} - \mu)}{s} = \frac{n^{1/2} \bar{Z}}{s_Z}
$

where $ (n-1)s_Z^2 = \sum(Z_i-\bar{Z})^2$.

So: reduced to $ \mu=0$ and $ \sigma=1$.

Step 1: Define

$\displaystyle Y=(\sqrt{n}\bar{Z}, Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z})^t \, .
$

(So $ Y$ has same dimension as $ Z$.) Now

$\displaystyle Y =\left[\begin{array}{cccc}
\frac{1}{\sqrt{n}} &
\frac{1}{\sqrt{...
...]
\left[\begin{array}{c}
Z_1 \\
Z_2 \\
\vdots
\\
Z_n
\end{array}\right]
$

or letting $ M$ denote the matrix

$\displaystyle Y=MZ \, .
$

It follows that $ Y\sim MVN(0,MM^t)$ so we need to compute $ MM^t$:

$\displaystyle MM^t$ $\displaystyle = \left[\begin{array}{c\vert cccc} 1 & 0 & 0 & \cdots & 0 \\ \hli...
...ots & -\frac{1}{n} \\ 0 & \vdots & \cdots & & 1-\frac{1}{n} \end{array} \right]$    
  $\displaystyle = \left[\begin{array}{c\vert c} 1 & 0 \\ \hline \\ 0 & Q \end{array} \right] \, .$    

Solve for $ Z$ from $ Y$: $ Z_i = n^{-1/2}Y_1+Y_{i+1}$ for $ 1 \le i \le n-1$. Use the identity

$\displaystyle \sum_{i=1}^n (Z_i-\bar{Z}) = 0
$

to get $ Z_n = - \sum_{i=2}^n Y_i + n^{-1/2}Y_1$. So $ M$ invertible:

$\displaystyle \Sigma^{-1} \equiv (MM^t)^{-1} =
\left[\begin{array}{c\vert c}
1 & 0
\\
\hline
\\
0 & Q^{-1}
\end{array}\right]
$

Use change of variables to find $ f_Y$. Let $ {\bf y}_2$ denote vector whose entries are $ y_2,\ldots,y_n$. Note that

$\displaystyle y^t\Sigma^{-1}y = y_1^2 + {\bf y}_2^t Q^{-1} {\bf y}_2
$

Then

$\displaystyle f_Y(y) =$ $\displaystyle (2\pi)^{-n/2} \exp[-y^t\Sigma^{-1}y/2]/\vert\det M\vert$    
$\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2\pi}} e^{-y_1^2/2} \times$    
  $\displaystyle \frac{(2\pi)^{-(n-1)/2}\exp[-{\bf y}_2^t Q^{-1} {\bf y}_2/2]}{\vert\det M\vert}$    

Note: $ f_Y(y)$ is ftn of $ y_1$ times a ftn of $ y_2,\ldots,y_n$.

Thus $ \sqrt{n}\bar{Z}$ is independent of $ Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z}$.

Since $ s_Z^2$ is a function of $ Z_1-\bar{Z},\ldots,Z_{n-1}-\bar{Z}$ we see that $ \sqrt{n}\bar{Z}$ and $ s_Z^2$ are independent.

Also, density of $ Y_1$ is a multiple of the function of $ y_1$ in the factorization above. But factor is standard normal density so $ \sqrt{n}\bar{Z}\sim N(0,1)$.

First 2 parts done. Third part is a homework exercise.

Derivation of the $ \chi^2$ density:

Suppose $ Z_1,\ldots,Z_n$ are independent $ N(0,1)$. Define $ \chi^2_n$ distribution to be that of $ U=Z_1^2 + \cdots + Z_n^2$. Define angles $ \theta_1,\ldots,\theta_{n-1}$ by

$\displaystyle Z_1$ $\displaystyle = U^{1/2} \cos\theta_1$    
$\displaystyle Z_2$ $\displaystyle = U^{1/2} \sin\theta_1\cos\theta_2$    
$\displaystyle \vdots$ $\displaystyle = \vdots$    
$\displaystyle Z_{n-1}$ $\displaystyle = U^{1/2} \sin\theta_1\cdots \sin\theta_{n-2}\cos\theta_{n-1}$    
$\displaystyle Z_n$ $\displaystyle = U^{1/2} \sin\theta_1\cdots \sin\theta_{n-1}$    

(Spherical co-ordinates in $ n$ dimensions. The $ \theta$ values run from 0 to $ \pi$ except last $ \theta$ from 0 to $ 2\pi$.) Derivative formulas:

$\displaystyle \frac{\partial Z_i}{\partial U} = \frac{1}{2U} Z_i
$

and

$\displaystyle \frac{\partial Z_i}{\partial\theta_j} =
\left\{ \begin{array}{ll}...
...>i
\\
-Z_i\tan\theta_i & j=i
\\
Z_i\cot\theta_j & j < i
\end{array}\right.
$

Fix $ n=3$ to clarify the formulas.

Use shorthand $ R=\sqrt{U}$.

Matrix of partial derivatives is

$\displaystyle \left[\begin{array}{ccc}
\frac{\cos\theta_1}{2R}
&
-R \sin\theta_...
...R}
&
R cos\theta_1\sin\theta_2
&
R \sin\theta_1\cos\theta_2
\end{array}\right]
$

Find determinant by adding $ 2U^{1/2}\cos\theta_j/\sin\theta_j$ times col 1 to col $ j+1$ (no change in determinant).

Resulting matrix is lower triangular; diagonal entries $ U^{-1/2} \cos\theta_1 /2$, $ U^{1/2}\cos\theta_2/ \cos\theta_1$ and $ U^{1/2} \sin\theta_1/\cos\theta_2$.

We multiply these together to get

$\displaystyle U^{1/2}\sin(\theta_1)/2
$

(non-negative for all $ U$ and $ \theta_1$).

General $ n$: every term in the first column contains a factor $ U^{-1/2}/2$ while every other entry has a factor $ U^{1/2}$.

FACT: Multiplying a column in a matrix by $ c$ multiplies the determinant by $ c$.

SO: Jacobian of the transformation is $ u^{(n-1)/2}u^{-1/2}/2$ times some function, say $ h$, which depends only on the angles.

Thus the joint density of $ U,\theta_1,\ldots \theta_{n-1}$ is

$\displaystyle (2\pi)^{-n/2} \exp(-u/2) u^{(n-2)/2}h(\theta_1, \cdots, \theta_{n-1}) / 2
$

To compute the density of $ U$ we must do an $ n-1$ dimensional multiple integral $ d\theta_{n-1}\cdots d\theta_1$.

Answer has the form

$\displaystyle cu^{(n-2)/2} \exp(-u/2)
$

for some $ c$.

Evaluate $ c$ by making

$\displaystyle \int f_U(u) du = c \int u^{(n-2)/2} \exp(-u/2) du =1
$

Substitute $ y=u/2$, $ du=2dy$ to see that

$\displaystyle c 2^{n/2} \int y^{(n-2)/2}e^{-y} dy = c 2^{n/2} \Gamma(n/2) = 1
$

CONCLUSION: the $ \chi^2_n$ density is

$\displaystyle \frac{1}{2\Gamma(n/2)} \left(\frac{u}{2}\right)^{(n-2)/2} e^{-u/2} 1(u>0) \, .
$

Fourth part: consequence of first 3 parts and def'n of $ t_\nu$ distribution.

Defn: $ T\sim t_\nu$ if $ T$ has same distribution as

$\displaystyle Z/\sqrt{U/\nu}
$

where $ Z\sim N(0,1)$, $ U\sim\chi^2_\nu$ and $ Z$ and $ U$ are independent.

Derive density of $ T$ in this definition:

$\displaystyle P(T \le t)$ $\displaystyle = P( Z \le t\sqrt{U/\nu})$    
  $\displaystyle = \int_0^\infty \int_{-\infty}^{t\sqrt{u/\nu}} f_Z(z)f_U(u) dz du$    

Differentiate wrt $ t$ by differentiating inner integral:

$\displaystyle \frac{\partial}{\partial t}\int_{at}^{bt} f(x)dx
=
bf(bt)-af(at)
$

by fundamental thm of calculus. Hence

$\displaystyle \frac{d}{dt} P(T \le t) =
\int_0^\infty f_U(u)
\left(\frac{u}{\nu}\right)^{1/2}
\frac{\exp[-t^2u/(2\nu)]}{\sqrt{2\pi}} du
$

Plug in

$\displaystyle f_U(u)= \frac{1}{2\Gamma(\nu/2)}(u/2)^{(\nu-2)/2} e^{-u/2}
$

to get

$\displaystyle f_T(t) = \frac{\int_0^\infty (u/2)^{(\nu-1)/2}
\exp[-u(1+t^2/\nu)/2]du
}{2\sqrt{\pi\nu}\Gamma(\nu/2)} \, .
$

Substitute $ y=u(1+t^2/\nu)/2$, to get

$\displaystyle dy=(1+t^2/\nu)du/2$

$\displaystyle (u/2)^{(\nu-1)/2}= [y/(1+t^2/\nu)]^{(\nu-1)/2}$

leading to

$\displaystyle f_T(t) = \frac{(1+t^2/\nu)^{-(\nu+1)/2}
}{\sqrt{\pi\nu}\Gamma(\nu/2)}
\int_0^\infty y^{(\nu-1)/2} e^{-y} dy
$

or

$\displaystyle f_T(t)= \frac{\Gamma((\nu+1)/2)
}{\sqrt{\pi\nu}\Gamma(\nu/2)}
\frac{1}{(1+t^2/\nu)^{(\nu+1)/2}}\ ,.
$

next up previous


Postscript version of this page



Richard Lockhart
2001-01-15